Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth E. Herkenhoff is active.

Publication


Featured researches published by Kenneth E. Herkenhoff.


Nature | 2005

Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater.

Larry A. Haskin; Alian Wang; Bradley L. Jolliff; Harry Y. McSween; Benton C. Clark; David J. Des Marais; Scott M. McLennan; Nicholas J. Tosca; Joel A. Hurowitz; Jack D. Farmer; Albert S. Yen; Steven W. Squyres; Raymond E. Arvidson; G. Klingelhöfer; C. Schröder; Paulo A. de Souza; Douglas W. Ming; Ralf Gellert; Jutta Zipfel; J. Brückner; James F. Bell; Kenneth E. Herkenhoff; Philip R. Christensen; Steve Ruff; Diana L. Blaney; S. Gorevan; Nathalie A. Cabrol; Larry S. Crumpler; John A. Grant; L. A. Soderblom

Gusev crater was selected as the landing site for the Spirit rover because of the possibility that it once held a lake. Thus one of the rovers tasks was to search for evidence of lake sediments. However, the plains at the landing site were found to be covered by a regolith composed of olivine-rich basaltic rock and windblown ‘global’ dust. The analyses of three rock interiors exposed by the rock abrasion tool showed that they are similar to one another, consistent with having originated from a common lava flow. Here we report the investigation of soils, rock coatings and rock interiors by the Spirit rover from sol (martian day) 1 to sol 156, from its landing site to the base of the Columbia hills. The physical and chemical characteristics of the materials analysed provide evidence for limited but unequivocal interaction between water and the volcanic rocks of the Gusev plains. This evidence includes the softness of rock interiors that contain anomalously high concentrations of sulphur, chlorine and bromine relative to terrestrial basalts and martian meteorites; sulphur, chlorine and ferric iron enrichments in multilayer coatings on the light-toned rock Mazatzal; high bromine concentration in filled vugs and veins within the plains basalts; positive correlations between magnesium, sulphur and other salt components in trench soils; and decoupling of sulphur, chlorine and bromine concentrations in trench soils compared to Gusev surface soils, indicating chemical mobility and separation.


Science | 2007

A Closer Look at Water-Related Geologic Activity on Mars

Alfred S. McEwen; Carl J. Hansen; W. A. Delamere; Eric M. Eliason; Kenneth E. Herkenhoff; Laszlo P. Keszthelyi; V. C. Gulick; R. L. Kirk; Michael T. Mellon; John A. Grant; Nicolas Thomas; Catherine M. Weitz; Steven W. Squyres; Nathan T. Bridges; Scott L. Murchie; F. P. Seelos; Kimberly D. Seelos; Chris H. Okubo; Moses Pollen Milazzo; Livio L. Tornabene; Windy L. Jaeger; Shane Byrne; Patrick Russell; J. L. Griffes; Sara Martínez-Alonso; A. Davatzes; Frank C. Chuang; B. J. Thomson; Kathryn Elspeth Fishbaugh; Colin M. Dundas

Water has supposedly marked the surface of Mars and produced characteristic landforms. To understand the history of water on Mars, we take a close look at key locations with the High-Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter, reaching fine spatial scales of 25 to 32 centimeters per pixel. Boulders ranging up to ∼2 meters in diameter are ubiquitous in the middle to high latitudes, which include deposits previously interpreted as finegrained ocean sediments or dusty snow. Bright gully deposits identify six locations with very recent activity, but these lie on steep (20° to 35°) slopes where dry mass wasting could occur. Thus, we cannot confirm the reality of ancient oceans or water in active gullies but do see evidence of fluvial modification of geologically recent mid-latitude gullies and equatorial impact craters.


Journal of Geophysical Research | 2006

Sulfate deposition in subsurface regolith in Gusev crater, Mars

Alian Wang; Larry A. Haskin; Steven W. Squyres; Bradley L. Jolliff; Larry S. Crumpler; Ralf Gellert; C. Schröder; Kenneth E. Herkenhoff; Joel A. Hurowitz; Nicholas J. Tosca; William H. Farrand; Robert C. Anderson; Amy T. Knudson

Excavating into the shallow Martian subsurface has the potential to expose stratigraphic layers and mature regolith, which may hold a record of more ancient aqueous interactions than those expected under current Martian surface conditions. During the Spirit rovers exploration of Gusev crater, rover wheels were used to dig three trenches into the subsurface regolith down to 6-11 cm depth: Road Cut, the Big Hole, and The Boroughs. A high oxidation state of Fe and high concentrations of Mg, S, Cl, and Br were found in the subsurface regolith within the two trenches on the plains, between the Bonneville crater and the foot of Columbia Hills. Data analyses on the basis of geochemistry and mineralogy observations suggest the deposition of sulfate minerals within the subsurface regolith, mainly Mg-sulfates accompanied by minor Ca-sulfates and perhaps Fe-sulfates. An increase of Fe2O3, an excess of SiO2, and a minor decrease in the olivine proportion relative to surface materials are also inferred. Three hypotheses are proposed to explain the geochemical trends observed in trenches: (1) multiple episodes of acidic fluid infiltration, accompanied by in situ interaction with igneous minerals and salt deposition; (2) an open hydrologic system characterized by ion transportation in the fluid, subsequent evaporation of the fluid, and salt deposition; and (3) emplacement and mixing of impact ejecta of variable composition. While all three may have plausibly contributed to the current state of the subsurface regolith, the geochemical data are most consistent with ion transportation by fluids and salt deposition as a result of open-system hydrologic behavior. Although sulfates make up >20 wt.% of the regolith in the wall of The Boroughs trench, a higher hydrated sulfate than kieserite within The Boroughs or a greater abundance of sulfates elsewhere than is seen in The Boroughs wall regolith would be needed to hold the structural water indicated by the water-equivalent hydrogen concentration observed by the Gamma-Ray Spectrometer on Odyssey in the Gusev region. Copyright 2006 by the American Geophysical Union.


Science | 2009

Exploration of Victoria Crater by the Mars Rover Opportunity

Steven W. Squyres; Andrew H. Knoll; Raymond E. Arvidson; J. W. Ashley; James F. Bell; Wendy M. Calvin; Philip R. Christensen; Benton C. Clark; Barbara A. Cohen; P. A. de Souza; Lauren Edgar; William H. Farrand; Iris Fleischer; R. Gellert; M. P. Golombek; John A. Grant; John P. Grotzinger; Alexander G. Hayes; Kenneth E. Herkenhoff; James Richard Johnson; Bradley L. Jolliff; G. Klingelhöfer; Amy T. Knudson; R. Li; Timothy J. McCoy; Scott M. McLennan; D. W. Ming; D. W. Mittlefehldt; Richard V. Morris; J. W. Rice

“Lake” Victoria? After having explored the Eagle and Endurance craters, which are separated by only 800 meters, the Mars Exploration Rover Opportunity spent 2 years at Victoria, a much larger impact crater located 6 kilometers south across Meridiani Planum. Sedimentary rocks previously analyzed at Eagle and Endurance point to local environmental conditions that included abundant liquid water in the ancient past. Now, an analysis of rocks in the walls of Victoria by Squyres et al. (p. 1058) reveals that the aqueous alteration processes that operated at Eagle and Endurance also acted at Victoria. In addition, sedimentary layering in the crater walls preserves evidence of ancient windblown dunes. Water-induced alteration processes once acted on sedimentary rocks across a plain near the equator of Mars. The Mars rover Opportunity has explored Victoria crater, a ~750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those ~6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.


Science | 2016

Large wind ripples on Mars: A record of atmospheric evolution

Mathieu G.A. Lapotre; Ryan C. Ewing; Michael P. Lamb; Woodward W. Fischer; John P. Grotzinger; David M. Rubin; Kevin W. Lewis; M Ballard; Mitch D. Day; Sanjeev Gupta; Steven G. Banham; Nathan T. Bridges; D. J. Des Marais; A. A. Fraeman; J. A. Grant; Kenneth E. Herkenhoff; Douglas W. Ming; Michael A. Mischna; Melissa S. Rice; D A Sumner; Ashwin R. Vasavada; R. A. Yingst

Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter– to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars instead form by wind because of the higher kinematic viscosity of the low-density atmosphere. A reevaluation of the wind-deposited strata in the Burns formation (about 3.7 billion years old or younger) identifies potential wind-drag ripple stratification formed under a thin atmosphere.


Journal of Geophysical Research | 2008

Veneers, rinds, and fracture fills: Relatively late alteration of sedimentary rocks at Meridiani Planum, Mars

Andrew H. Knoll; Brad L. Jolliff; William H. Farrand; James F. Bell; Benton C. Clark; Ralf Gellert; M. P. Golombek; John P. Grotzinger; Kenneth E. Herkenhoff; Jeffrey R. Johnson; Scott M. McLennan; Richard V. Morris; Steven W. Squyres; Robert J. Sullivan; Nicholas J. Tosca; Albert S. Yen; Zoe Learner

Veneers and thicker rinds that coat outcrop surfaces and partially cemented fracture fills formed perpendicular to bedding document relatively late stage alteration of ancient sedimentary rocks at Meridiani Planum, Mars. The chemistry of submillimeter thick, buff-colored veneers reflects multiple processes at work since the establishment of the current plains surface. Veneer composition is dominated by the mixing of silicate-rich dust and sulfate-rich outcrop surface, but it has also been influenced by mineral precipitation, including NaCl, and possibly by limited physical or chemical weathering of sulfate minerals. Competing processes of chemical alteration (perhaps mediated by thin films of water or water vapor beneath blanketing soils) and sandblasting of exposed outcrop surfaces determine the current distribution of veneers. Dark-toned rinds several millimeters thick reflect more extensive surface alteration but also indicate combined dust admixture, halite precipitation, and possible minor sulfate removal. Cemented fracture fills that are differentially resistant to erosion occur along the margins of linear fracture systems possibly related to impact. These appear to reflect limited groundwater activity along the margins of fractures, cementing mechanically introduced fill derived principally from outcrop rocks. The limited thickness and spatial distribution of these three features suggest that aqueous activity has been rare and transient or has operated at exceedingly low rates during the protracted interval since outcropping Meridiani strata were exposed on the plains surface.


Journal of Geophysical Research | 2010

Crater population and resurfacing of the Martian north polar layered deposits

Maria E. Banks; Shane Byrne; Kapil Galla; Alfred S. McEwen; Veronica J. Bray; Colin M. Dundas; Kathryn Elspeth Fishbaugh; Kenneth E. Herkenhoff; Bruce C. Murray

Present-day accumulation in the north polar layered deposits (NPLD) is thought to occur via deposition on the north polar residual cap. Understanding current mass balance in relation to current climate would provide insight into the climatic record of the NPLD. To constrain processes and rates of NPLD resurfacing, a search for craters was conducted using images from the Mars Reconnaissance Orbiter Context Camera. One hundred thirty craters have been identified on the NPLD, 95 of which are located within a region defined to represent recent accumulation. High Resolution Imaging Science Experiment images of craters in this region reveal a morphological sequence of crater degradation that provides a qualitative understanding of processes involved in crater removal. A classification system for these craters was developed based on the amount of apparent degradation and infilling and where possible depth/diameter ratios were determined. The temporal and spatial distribution of crater degradation is interpreted to be close to uniform. Through comparison of the size-frequency distribution of these craters with the expected production function, the craters are interpreted to be an equilibrium population with a crater of diameter D meters having a lifetime of ~30.75D^(1.14) years. Accumulation rates within these craters are estimated at 7.2D^(−0.14) mm/yr, which corresponds to values of ~3–4 mm/yr and are much higher than rates thought to apply to the surrounding flat terrain. The current crater population is estimated to have accumulated in the last ~20 kyr or less.


Science | 2017

Redox stratification of an ancient lake in Gale crater, Mars

Joel A. Hurowitz; John P. Grotzinger; Woodward W. Fischer; Scott M. McLennan; Ralph E. Milliken; Nathan Stein; Ashwin R. Vasavada; David F. Blake; Erwin Dehouck; Jen Eigenbrode; Alberto G. Fairén; Jens Frydenvang; Ralf Gellert; John A. Grant; Sanjeev Gupta; Kenneth E. Herkenhoff; Douglas W. Ming; E. B. Rampe; Mariek E. Schmidt; K. L. Siebach; Katherine Stack-Morgan; Dawn Y. Sumner; Roger C. Wiens

The depths of an ancient lake on Mars Gale crater on Mars was once a lake fed by rivers and groundwater. Hurowitz et al. analyzed 3.5 years of data from the Curiosity rover’s exploration of Gale crater to determine the chemical conditions in the ancient lake. Close to the surface, there were plenty of oxidizing agents and rocks formed from large, dense grains, whereas the deeper layers had more reducing agents and were formed from finer material. This redox stratification led to very different environments in different layers, which provides evidence for Martian climate change. The results will aid our understanding of where and when Mars was once habitable. Science, this issue p. eaah6849 Gale crater on Mars was once a lake that separated into layers with differing chemical conditions. INTRODUCTION The primary goal of NASA’s Curiosity rover mission is to explore and quantitatively assess a local region on Mars’ surface as a potential habitat for past or present life. A necessary component of that assessment involves an investigation of the surface chemical conditions and paleoclimate of ancient Mars. Gale crater was selected as the landing site for Curiosity; it hosts a ~5-km-tall mountain of layered sedimentary rock. The rocks of Mount Sharp preserve a long-duration record of martian environmental conditions. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment that was sustained for tens of thousands to tens of millions of years by rivers draining into the crater. RATIONALE We seek to constrain the chemical environment within the lake in Gale crater, as well as short- and long-term climate variations in and around Gale crater. We focus on fine-grained sedimentary rocks that carry information about sediment provenance, the environment of deposition, the conversion of sediment to rock during burial (i.e., lithification), and the chemical conditions of later modification (i.e., diagenesis). These were investigated during the first 1300 martian solar days (sols) of rover operations in Gale crater using bulk geochemical and mineralogical analysis techniques, combined with high-resolution color imagery at a variety of scales. RESULTS Two mudstone units have been recognized, both deposited in lakes: the Sheepbed member of the Yellowknife Bay formation, an older set of strata defining the base of the stratigraphic section; and the Murray formation, of relatively younger age and positioned higher in the stratigraphic section. The chemical index of alteration (CIA) paleoclimate proxy increases by up to ~10 to 20 CIA units (expressed in %) from the Sheepbed member to the Murray formation. On the basis of mineralogy, geochemistry, textural properties, and stratigraphic relationships, the Murray formation can be subdivided into two sedimentary associations, or facies: the hematite-phyllosilicate (HP) facies and the magnetite-silica (MS) facies. The HP facies is characterized by abundant Fe3+ oxides accompanied by phyllosilicates, as well as indications of Mn oxidation and trace metal concentration. These properties are consistent with deposition in an oxidizing environment. The MS facies is recognized by a near-complete absence of pure Fe3+ minerals, and high concentrations of silica accompanied by magnetite, consistent with deposition in an anoxic environment. Both facies were affected by a saline overprint after burial and lithification. CONCLUSION The observed variations in CIA are consistent with modest short-term fluctuations in the ancient climate between cold, dry conditions and relatively warmer, wetter conditions. These changes occurred during the deposition of lake-bed mudstones in an environment that was conducive to the presence of a long-lived lake in Gale crater. We propose that the distinct properties of the two Murray facies were developed as a result of (i) fractionation of river-borne detritus into coarser, denser materials in shallow water close to shore and finer, lower density materials offshore in deeper water as a result of deceleration of river flow as it entered the lake; and (ii) redox stratification of the lake water body, caused by depth-dependent variations in the concentration of atmospheric oxidants and dissolved, groundwater-derived solutes, resulting in oxidizing conditions in shallow water and anoxia in deeper water. The addition of saline minerals during a later phase of brine migration through the section records longer-term changes in martian climate at Gale crater, perhaps driven by global atmospheric escape processes. The recognition of redox stratification in the lake in Gale crater adds new detail to our understanding of ancient martian aquatic environments. Previously reported detections of organic carbon compounds, nitrogen, phosphate minerals, and Fe and S minerals in a variety of redox states, combined with the evidence presented here for relatively stable climate conditions and gradients in fluid oxidation state, provide compelling evidence that all of the physical, chemical, and energetic conditions necessary to establish a habitable environment were present on Mars between ~3.8 billion and 3.1 billion years ago. A hypothesized redox-stratified lake in Gale crater. Model of physical transport and geochemical processes occurring during deposition of the Murray formation. Fresh water and clastic materials are delivered by overland flow from fluvial systems; dissolved solutes enter the lake by groundwater seepage. Redox stratification results from differences in the mass balance of atmospheric oxidants and oxidizable cations, causing redox-sensitive mineral assemblages to vary as a function of lake water depth. Flow deceleration results in sediment fractionation into distinct sedimentological associations; coarser, denser clastic materials are deposited closer to shore (hematite-phyllosilicate facies), whereas finer, less dense clastics travel further into the lake (magnetite-silica facies). UV, ultraviolet. In 2012, NASA’s Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition from colder to warmer climate conditions is preserved in the stratigraphy. Finally, a late phase of geochemical modification by saline fluids is recognized.


Geology | 2005

Mars Exploration Rover Geologic traverse by the Spirit rover in the Plains of Gusev Crater, Mars

Larry S. Crumpler; Steven W. Squyres; Raymond E. Arvidson; James F. Bell; Diana L. Blaney; Nathalie A. Cabrol; Philip R. Christensen; David J. DesMarais; Jack D. Farmer; R. L. Fergason; Matthew P. Golombek; Frederick D. Grant; John A. Grant; Ronald Greeley; Brian C. Hahn; Kenneth E. Herkenhoff; Joel A. Hurowitz; Amy T. Knudson; Geoffrey A. Landis; Rongxing Li; J. N. Maki; Harry Y. McSween; Douglas W. Ming; Jeff Moersch; Meredith C. Payne; James R Rice; L. Richter; Steven W. Ruff; Michael H. Sims; Shane D. Thompson

The Spirit rover completed a 2.5 km traverse across gently sloping plains on the floor of Gusev crater from its location on the outer rim of Bonneville crater to the lower slopes of the Columbia Hills, Mars. Using the Athena suite of instruments in a transect approach, a systematic series of overlapping panoramic mosaics, remote sensing observations, surface analyses, and trenching operations documented the lateral variations in landforms, geologic materials, and chemistry of the surface throughout the traverse, demonstrating the ability to apply the techniques of field geology by remote rover operations. Textures and shapes of rocks within the plains are consistent with derivation from impact excavation and mixing of the upper few meters of basaltic lavas. The contact between surrounding plains and crater ejecta is generally abrupt and marked by increases in clast abundance and decimeter-scale steps in relief. Basaltic materials of the plains overlie less indurated and more altered rock types at a time-stratigraphic contact between the plains and Columbia Hills that occurs over a distance of one to two meters. This implies that regional geologic contacts are well preserved and that Earth-like field geologic mapping will be possible on Mars despite eons of overturn by small impacts.


Journal of Geophysical Research | 2015

Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater

Larry S. Crumpler; Raymond E. Arvidson; James F. Bell; B. C. Clark; Barbara A. Cohen; William H. Farrand; Ralf Gellert; M. P. Golombek; J. A. Grant; Edward A. Guinness; Kenneth E. Herkenhoff; Jeffrey R. Johnson; Bradley L. Jolliff; D. W. Ming; D. W. Mittlefehldt; T. J. Parker; J. W. Rice; S. W. Squyres; R. Sullivan; Albert S. Yen

Using the Mars Exploration Rover Opportunity, we have compiled one of the first field geologic maps on Mars while traversing the Noachian terrain along the rim of the 22 km diameter Endeavour Crater (Latitude −2°16′33″, Longitude −5°10′51″). In situ mapping of the petrographic, elemental, structural, and stratigraphic characteristics of outcrops and rocks distinguishes four mappable bedrock lithologic units. Three of these rock units predate the surrounding Burns formation sulfate-rich sandstones and one, the Matijevic Formation, represents conditions on early Mars predating the formation of Endeavour Crater. The stratigraphy assembled from these observations includes several geologic unconformities. The differences in lithologic units across these unconformities record changes in the character and intensity of the Martian aqueous environment over geologic time. Water circulated through fractures in the oldest rocks over periods long enough that texturally and elementally significant alteration occurred in fracture walls. These oldest pre-Endeavour rocks and their network of mineralized and altered fractures were preserved by burial beneath impact ejecta and were subsequently exhumed and exposed. The alteration along joints in the oldest rocks and the mineralized veins and concentrations of trace metals in overlying lithologic units is direct evidence that copious volumes of mineralized and/or hydrothermal fluids circulated through the early Martian crust. The wide range in intensity of structural and chemical modification from outcrop to outcrop along the crater rim shows that the ejecta of large (>8 km in diameter) impact craters is complex. These results imply that geologic complexity is to be anticipated in other areas of Mars where cratering has been a fundamental process in the local and regional geology and mineralogy.

Collaboration


Dive into the Kenneth E. Herkenhoff's collaboration.

Top Co-Authors

Avatar

James F. Bell

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raymond E. Arvidson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

James Richard Johnson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan T. Bridges

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge