Maria M. Kreuzberg
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria M. Kreuzberg.
Circulation Research | 2005
Maria M. Kreuzberg; Goran Söhl; Jung-Sun Kim; Klaus Willecke; Feliksas F. Bukauskas
Gap junction channels composed of connexin (Cx) 40, Cx43, and Cx45 proteins are known to be necessary for impulse propagation through the heart. Here, we report mouse connexin30.2 (mCx30.2) to be a new cardiac connexin that is expressed mainly in the conduction system of the heart. Antibodies raised to the cytoplasmic loop or the C-terminal regions of mCx30.2 recognized this protein in mouse heart as well as in HeLa cells transfected with wild-type mCx30.2 or mCx30.2 fused with enhanced green fluorescent protein (mCx30.2-EGFP). Immunofluorescence analyses of adult hearts yielded positive signals within the sinoatrial node, atrioventricular node, and A-V bundle of the cardiac conduction system. Dye transfer studies demonstrated that mCx30.2 and mCx30.2-EGFP channels discriminate poorly on the basis of charge, but do not allow permeation of tracers >400 Da. Both mCx30.2 and mCx30.2-EGFP gap junctional channels exhibited weak sensitivity to transjunctional voltage (Vj) and a single channel conductance of ≈9 pS, which is the lowest among all members of the connexin family measured in HeLa cell transfectants. HeLa mCx30.2-EGFP transfectants when paired with cells expressing Cx40, Cx43, or Cx45 formed functional heterotypic gap junction channels that exhibited low unitary conductances (15 to 18 pS), rectifying open channel I-V relations and asymmetric Vj dependence. The electrical properties of homo- and hetero-typic junctions involving mCx30.2 may contribute to slow propagation velocity in nodal tissues and directional asymmetry of excitation spread in the AV nodal region.
Molecular and Cellular Neuroscience | 2008
Maria M. Kreuzberg; Jim Deuchars; Elisa K. Weiss; Andreas Schober; Stephan Sonntag; Kerstin Wellershaus; Andreas Draguhn; Klaus Willecke
Electrical synapses, particularly gap junctions composed of connexin (Cx) 36, have been suggested to synchronize neuronal network oscillations. Recently, we generated Cx30.2-deficient mice which express beta-galactosidase under control of Cx30.2 gene regulatory elements. In the central nervous system beta-galactosidase activity representing Cx30.2 expression was restricted to NeuN-positive cells, thus identifying Cx30.2 as new neuronal connexin. In the hippocampus, co-immunofluorescence analyses revealed beta-galactosidase/Cx30.2 expression in GABAergic inhibitory interneurons such as parvalbumin- and somatostatin-positive basket, axo-axonic, bistratified or oriens lacunosum-moleculare cells. approximately 94% of the Cx30.2 expressing parvalbumin-positive interneurons also expressed Cx36. Performing field potential recordings from hippocampal slices we found no differences in basal excitation and excitation-inhibition balance between Cx30.2+/+ and Cx30.2LacZ/LacZ)mice. Furthermore, frequency and power of gap junction dependent gamma and ripples oscillations were similar in these animals. This suggests that the lack of Cx30.2 in interneurons can be largely compensated by other connexins, most likely Cx36.
Visual Neuroscience | 2010
Luis Pérez de Sevilla Müller; Karin Dedek; Ulrike Janssen-Bienhold; Arndt Meyer; Maria M. Kreuzberg; Susanne Lorenz; Klaus Willecke; Reto Weiler
Mammalian retinae express multiple connexins that mediate the metabolic and electrical coupling of various cell types. In retinal neurons, only connexin 36, connexin 45, connexin 50, and connexin 57 have been described so far. Here, we present an analysis of a novel retinal connexin, connexin 30.2 (Cx30.2), and its regulation in the mouse retina. To analyze the expression of Cx30.2, we used a transgenic mouse line in which the coding region of Cx30.2 was replaced by lacZ reporter DNA. We detected the lacZ signal in the nuclei of neurons located in the inner nuclear layer and the ganglion cell layer (GCL). In this study, we focused on the GCL and characterized the morphology of the Cx30.2-expressing cells. Using immunocytochemistry and intracellular dye injections, we found six different types of Cx30.2-expressing ganglion cells: one type of ON-OFF, three types of OFF, and two types of ON ganglion cells; among the latter was the RG A1 type. We show that RG A1 cells were heterologously coupled to numerous displaced amacrine cells. Our results suggest that these gap junction channels may be heterotypic, involving Cx30.2 and a connexin yet unidentified in the mouse retina. Gap junction coupling can be modulated by protein kinases, a process that plays a major role in retinal adaptation. Therefore, we studied the protein kinase-induced modulation of coupling between RG A1 and displaced amacrine cells. Our data provide evidence that coupling of RG A1 cells to displaced amacrine cells is mediated by Cx30.2 and that the extent of this coupling is modulated by protein kinase C.
Journal of Molecular and Cellular Cardiology | 2009
Maria M. Kreuzberg; Marcus Liebermann; Sara Segschneider; Radoslaw Dobrowolski; Halina Dobrzynski; Riyaz A. Kaba; Giselle Rowlinson; Emmanuel Dupont; Nicholas J. Severs; Klaus Willecke
In the human heart connexin(Cx)40, Cx43 and Cx45-containing gap junctional channels electrically couple cardiomyocytes, forming a functional syncytium. In the mouse heart, additionally, Cx30.2-containing gap junctions have been detected in the atrioventricular node where they are implicated, together with Cx45, in impulse delay. However, whether the human ortholog of Cx30.2, Cx31.9, is expressed in the human heart has not previously been investigated. We therefore generated Cx31.9 specific antibodies to test for the expression of Cx31.9 in the human heart. These antibodies recognized the Cx31.9 protein in HeLaCx31.9 transfectants by immunofluorescence and immunoblot analyses. However, we did not find punctate Cx31.9 specific immunofluorescence signals in the working myocardium or in the impulse generation and conduction system of adult or fetal human heart. Complementary immunoblot analyses did not reveal Cx31.9 protein in the adult atrial or ventricular myocardium. We conclude that the Cx31.9 protein, unlike its counterpart in the mouse, is not expressed in detectable quantities and is thus unlikely to contribute to the impulse generation and conduction system or the working myocardium of the human heart.
Experimental Cell Research | 2009
Tanja Auth; Sharazad Schlüter; Stephanie Urschel; Petra Kussmann; Stephan Sonntag; Thorsten Höher; Maria M. Kreuzberg; Radoslaw Dobrowolski; Klaus Willecke
Gap junctions mediate electrical and metabolic communication between cells in almost all tissues and are proposed to play important roles in cellular growth control, differentiation and embryonic development. Gap junctional communication and channel assembly were suggested to be regulated by interaction of connexins with different proteins including kinases and phosphatases. Here, we identified the tumor susceptibility gene 101 (TSG101) protein to bind to the carboxyterminal tail of connexin45 in a yeast two-hybrid protein interaction screen. Glutathione S-transferase pull down experiments and immunoprecipitation revealed that not only connexin45 but also connexin30.2, -36, and -43 carboxyterminal regions were associated with TSG101 protein in pull down analyses and that connexin31, -43 and -45 co-precipitate with endogenous TSG101 protein in lysates from HM1 embryonic stem cells. TSG101 has been shown to be involved in cell cycle control, transcriptional regulation and turnover of endocytosed proteins. Thus, we decided to study the functional role of this interaction. SiRNA mediated knock down of TSG101 in HM1 embryonic stem cells led to increased levels of connexin43 and -45, prolonged half life of these connexins and increased transfer of microinjected Lucifer yellow. Our results suggest that TSG101 is involved in the degradation of connexins via interaction with connexin proteins.
Journal of Molecular and Cellular Cardiology | 2009
Jan W. Schrickel; Maria M. Kreuzberg; Alexander Ghanem; Jung-Sun Kim; Markus Linhart; René Andrié; Klaus Tiemann; Georg Nickenig; Thorsten Lewalter; Klaus Willecke
Connexin (Cx) 30.2, Cx40 and Cx45 containing gap junctional channels contribute to electrical impulse propagation through the mouse atrioventricular node (AV-node). The cross talk in between these Cxs may be of great importance for AV-nodal conduction. We generated Cx30.2/Cx40 double deficient mice (Cx30.2(LacZ/LacZ)Cx40(-/-)) and analyzed the relative impact of Cx30.2 and Cx40 on cardiac conductive properties in vivo by use of electrophysiological examination. Cx30.2(LacZ/LacZ)Cx40(-/-) mice exhibited neither obvious cardiac malformations nor impaired contractile function. In surface-ECG analyses, Cx30.2(LacZ/LacZ)Cx40(-/-) and Cx40 deficient animals (Cx40(-/-)) showed significantly longer P-wave durations, PQ-intervals and prolonged QRS-complexes relative to wildtype littermates (WT). Cx30.2-deficient mice (Cx30.2(LacZ/LacZ)) developed shorter PQ-intervals as compared to WT, Cx40(-/-) or Cx30.2/Cx40 double deficient mice. Intracardiac evaluation of the atria-His (AH) and His-ventricle (HV) intervals representing supra and infra-Hisian conduction yielded significant acceleration of supra-Hisian conductivity in Cx30.2(LacZ/LacZ) (AH: 28.2+/-4.3 ms) and prolongation of infra-Hisian conduction in Cx40(-/-) mice (HV: 13.7+/-2.6 ms). These parameters were unchanged in the Cx30.2(LacZ/LacZ)Cx40(-/-) mice (AH: 37.3+/-5.5 ms, HV: 11.7+/-2.6 ms), which exhibited AV-nodal and ventricular conduction times similar to WT animals (AH: 35.9+/-4.4 ms, HV: 10.5+/-1.9 ms). We conclude that the remaining Cx45 gap junctional channels are sufficient to maintain electrical coupling and cardiac impulse propagation in the AV-node and proximal ventricular conduction system in mice. We suggest that Cx30.2 and Cx40 act as counterparts in the AV-node and His-bundle, decreasing or increasing, respectively, electrical coupling and conduction velocity in these areas.
European Journal of Cell Biology | 2009
Julia von Maltzahn; Maria M. Kreuzberg; Gabi Matern; Carsten Euwens; Thorsten Höher; Philipp Wörsdörfer; Klaus Willecke
Connexin45 (Cx45) is a member of the connexin family which can form gap junction channels and is known to be expressed in several cell types in the embryonic as well as adult mouse including working cardiomyocytes and certain types of neurons. Until now its subcellular localization could not be unequivocally determined in certain tissues due to the lack of sensitive and specific antibodies. In order to investigate the localization of Cx45, we have generated a transgenic mouse expressing a fusion protein composed of Cx45 and eGFP under control of the endogenous Cx45 promoter using a bacterial artificial chromosome (BAC). In previous studies it had been shown that a C-terminal tag of connexin proteins only slightly altered the properties of gap junction channels in cultured cells and allowed direct visualization of the fusion protein. In the adult brain the expression of the Cx45eGFP protein was found in the subventricular zone in transient amplifying cells as well as in neuroblasts and ependymal cells. In addition Cx45eGFP is expressed in the atrial and ventricular working myocardium, i.e. regions of the heart where divergent results regarding Cx45 expression had previously been published. In the lung we identified Cx45eGFP in the smooth muscle cell layer of bronchioles. The Cx45eGFP transgene could not rescue embryonic lethality of Cx45-deficient mice, i.e. Cx45eGFP//Cx45(-/-) mice die around ED10.5 presumably due to altered properties of gap junction channels as a result of C-terminal tagging of Cx45.
Circulation Research | 2012
Marina Frank; Angela Wirth; René Andrié; Maria M. Kreuzberg; Radoslaw Dobrowolski; Gerald Seifert; Stefan Offermanns; Georg Nickenig; Klaus Willecke; Jan W. Schrickel
Rationale: The gap junctional protein connexin (Cx) 45 is strongly expressed in the early embryonic myocardium. In the adult hearts of mice and humans, the expression mainly is restricted to the cardiac conduction system. Cx45 plays an essential role for development and function of the embryonic heart because general and cardiomyocyte-directed deficiencies of Cx45 in mice lead to embryonic lethality attributable to morphological and functional cardiovascular defects. The function of Cx45 in the adult mouse has not yet been cleared. Objective: To clarify the function of Cx45 in the adult mouse heart. Methods and Results: To circumvent the embryonic lethality resulting from Cx45 deficiency, mice were generated in which deletion of Cx45 specifically was induced in cardiomyocytes of adult mice. These Cx45-deficient mice were viable but showed a decrease in atrioventricular nodal conductivity. In addition, the Cx30.2 protein that is coexpressed with Cx45 in the cardiac conduction system was posttranscriptionally reduced by 70% in mutant hearts. Furthermore, deletion of both Cx45 and Cx30.2 resulted in viable mice that, however, showed stronger impairment of atrioventricular nodal conduction than the single Cx45-deficient mice. Conclusions: Cx45 is required for optimal impulse propagation in the atrioventricular node and stabilizes the level of the coexpressed Cx30.2 protein in the adult mouse heart. In contrast to the embryo, Cx45 is not essential for the viability of adult mice.
Circulation Research | 2012
Marina Frank; Angela Wirth; Ren eacute Andri eacute; Sara Segschneider; Maria M. Kreuzberg; Radoslaw Dobrowolski; Gerald Seifert; Stefan Offermanns; Georg Nickenig; Klaus Willecke; Jan W. Schrickel
Rationale: The gap junctional protein connexin (Cx) 45 is strongly expressed in the early embryonic myocardium. In the adult hearts of mice and humans, the expression mainly is restricted to the cardiac conduction system. Cx45 plays an essential role for development and function of the embryonic heart because general and cardiomyocyte-directed deficiencies of Cx45 in mice lead to embryonic lethality attributable to morphological and functional cardiovascular defects. The function of Cx45 in the adult mouse has not yet been cleared. Objective: To clarify the function of Cx45 in the adult mouse heart. Methods and Results: To circumvent the embryonic lethality resulting from Cx45 deficiency, mice were generated in which deletion of Cx45 specifically was induced in cardiomyocytes of adult mice. These Cx45-deficient mice were viable but showed a decrease in atrioventricular nodal conductivity. In addition, the Cx30.2 protein that is coexpressed with Cx45 in the cardiac conduction system was posttranscriptionally reduced by 70% in mutant hearts. Furthermore, deletion of both Cx45 and Cx30.2 resulted in viable mice that, however, showed stronger impairment of atrioventricular nodal conduction than the single Cx45-deficient mice. Conclusions: Cx45 is required for optimal impulse propagation in the atrioventricular node and stabilizes the level of the coexpressed Cx30.2 protein in the adult mouse heart. In contrast to the embryo, Cx45 is not essential for the viability of adult mice.
Biophysical Journal | 2007
Mindaugas Rackauskas; Maria M. Kreuzberg; Mindaugas Pranevicius; Klaus Willecke; Feliksas F. Bukauskas