Maria M. van Genderen
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria M. van Genderen.
American Journal of Human Genetics | 2009
Maria M. van Genderen; Mieke M. C. Bijveld; Yvonne Claassen; Ralph J. Florijn; Jillian N. Pearring; Françoise Meire; Maureen A. McCall; Frans C. C. Riemslag; Ronald G. Gregg; Arthur A. B. Bergen; Maarten Kamermans
Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous group of retinal disorders characterized by nonprogressive impaired night vision and variable decreased visual acuity. We report here that six out of eight female probands with autosomal-recessive complete CSNB (cCSNB) had mutations in TRPM1, a retinal transient receptor potential (TRP) cation channel gene. These data suggest that TRMP1 mutations are a major cause of autosomal-recessive CSNB in individuals of European ancestry. We localized TRPM1 in human retina to the ON bipolar cell dendrites in the outer plexifom layer. Our results suggest that in humans, TRPM1 is the channel gated by the mGluR6 (GRM6) signaling cascade, which results in the light-evoked response of ON bipolar cells. Finally, we showed that detailed electroretinography is an effective way to discriminate among patients with mutations in either TRPM1 or GRM6, another autosomal-recessive cCSNB disease gene. These results add to the growing importance of the diverse group of TRP channels in human disease and also provide new insights into retinal circuitry.
American Journal of Human Genetics | 2012
Neal S. Peachey; Thomas A. Ray; Ralph J. Florijn; Lucy B. Rowe; Trijntje Sjoerdsma; Susana Contreras-Alcantara; Kenkichi Baba; Gianluca Tosini; Nikita Pozdeyev; P. Michael Iuvone; Pasano Bojang; Jillian N. Pearring; Huibert J. Simonsz; Maria M. van Genderen; David G. Birch; Elias I. Traboulsi; Allison Dorfman; Irma Lopez; Huanan Ren; Andrew F. X. Goldberg; Patsy M. Nishina; Pierre Lachapelle; Maureen A. McCall; Robert K. Koenekoop; Arthur A. B. Bergen; Maarten Kamermans; Ronald G. Gregg
Complete congenital stationary night blindness (cCSNB) is a clinically and genetically heterogeneous group of retinal disorders characterized by nonprogressive impairment of night vision, absence of the electroretinogram (ERG) b-wave, and variable degrees of involvement of other visual functions. We report here that mutations in GPR179, encoding an orphan G protein receptor, underlie a form of autosomal-recessive cCSNB. The Gpr179(nob5/nob5) mouse model was initially discovered by the absence of the ERG b-wave, a component that reflects depolarizing bipolar cell (DBC) function. We performed genetic mapping, followed by next-generation sequencing of the critical region and detected a large transposon-like DNA insertion in Gpr179. The involvement of GPR179 in DBC function was confirmed in zebrafish and humans. Functional knockdown of gpr179 in zebrafish led to a marked reduction in the amplitude of the ERG b-wave. Candidate gene analysis of GPR179 in DNA extracted from patients with cCSNB identified GPR179-inactivating mutations in two patients. We developed an antibody against mouse GPR179, which robustly labeled DBC dendritic terminals in wild-type mice. This labeling colocalized with the expression of GRM6 and was absent in Gpr179(nob5/nob5) mutant mice. Our results demonstrate that GPR179 plays a critical role in DBC signal transduction and expands our understanding of the mechanisms that mediate normal rod vision.
Investigative Ophthalmology & Visual Science | 2010
Karin W. Littink; Robert K. Koenekoop; L. Ingeborgh van den Born; Rob W.J. Collin; Luminita Moruz; Joris A. Veltman; Susanne Roosing; Marijke N. Zonneveld; Amer Omar; Mahshad Darvish; Irma Lopez; Hester Y. Kroes; Maria M. van Genderen; Carel B. Hoyng; Klaus Rohrschneider; Mary J. van Schooneveld; Frans P.M. Cremers; Anneke I. den Hollander
PURPOSE To determine the genetic defect and to describe the clinical characteristics in a cohort of mainly nonconsanguineous cone-rod dystrophy (CRD) patients. METHODS One hundred thirty-nine patients with diagnosed CRD were recruited. Ninety of them were screened for known mutations in ABCA4, and those carrying one or two mutations were excluded from further research. Genome-wide homozygosity mapping was performed in the remaining 108. Known genes associated with autosomal recessive retinal dystrophies located within a homozygous region were screened for mutations. Patients in whom a mutation was detected underwent further ophthalmic examination. RESULTS Homozygous sequence variants were identified in eight CRD families, six of which were nonconsanguineous. The variants were detected in the following six genes: ABCA4, CABP4, CERKL, EYS, KCNV2, and PROM1. Patients carrying mutations in ABCA4, CERKL, and PROM1 had typical CRD symptoms, but a variety of retinal appearances on funduscopy, optical coherence tomography, and autofluorescence imaging. CONCLUSIONS Homozygosity mapping led to the identification of new mutations in consanguineous and nonconsanguineous patients with retinal dystrophy. Detailed clinical characterization revealed a variety of retinal appearances, ranging from nearly normal to extensive retinal remodeling, retinal thinning, and debris accumulation. Although CRD was initially diagnosed in all patients, the molecular findings led to a reappraisal of the diagnosis in patients carrying mutations in EYS, CABP4, and KCNV2.
British Journal of Ophthalmology | 2000
Maria M. van Genderen; Geert F Kinds; Frans C. C. Riemslag; Raoul C. M. Hennekam
AIMS To delineate the nature and frequency of ocular pathology in Rubinstein-Taybi syndrome (RTs). METHODS Literature was searched for reports describing ocular symptoms in patients with RTs. 24 RTs patients (out of a total of 73 Dutch known RTs individuals) were selected for ophthalmological and electrophysiological examination, selection being based only on the distance between a patients residence and the place of investigation. RESULTS Most frequently reported eye anomalies in the literature were lacrimal duct obstruction, corneal abnormalities, congenital glaucoma, congenital cataract, and colobomata. Abnormalities of almost any eye segment have been published in case reports. Ophthalmological examination of 24 Dutch RTs patients showed a visual acuity ⩽0.3 in five patients. The most frequently found eye anomalies were nasolacrimal duct problems (six patients), cataract (six patients, four congenital), and retinal abnormalities (18 patients). VEPs showed an abnormal waveform in 15 patients. It was possible to perform an ERG in 18 patients, of whom 14 were abnormal (eight showed cone dysfunction, six cone-rod dysfunction). CONCLUSIONS Ocular abnormalities occur in the majority of RTs patients and can be remarkably diverse. The high frequency of retinal dysfunction (78%) has not been described before. With age, retinal as well as electrophysiological abnormalities occur more frequently. In four patients no signs of retinal dysfunction were observed, indicating phenotypic heterogeneity. Further cytogenetic and molecular examination of the patients is needed before it becomes clear if this also represents genetic heterogeneity. Because of the high frequency of ocular abnormalities, visual function tests and electrophysiological investigations should be performed in every RTs patient at regular intervals.
Ophthalmology | 2012
Alberta A.H.J. Thiadens; T. My Lan Phan; Renate C. Zekveld-Vroon; Bart P. Leroy; L. Ingeborgh van den Born; Carel B. Hoyng; Caroline C. W. Klaver; Susanne Roosing; Jan-Willem R. Pott; Mary J. van Schooneveld; Norka van Moll-Ramirez; Maria M. van Genderen; Camiel J. F. Boon; Anneke I. den Hollander; Arthur A. B. Bergen; Elfride De Baere; Frans P.M. Cremers; Andrew J. Lotery
OBJECTIVE To evaluate the clinical course, genetic etiology, and visual prognosis in patients with cone dystrophy (CD) and cone-rod dystrophy (CRD). DESIGN Clinic-based, longitudinal, multicenter study. PARTICIPANTS Consecutive probands with CD (N = 98), CRD (N = 83), and affected relatives (N = 41 and N = 17, respectively) from various ophthalmogenetic clinics in The Netherlands, Belgium, and the United Kingdom. METHODS Data on best-corrected Snellen visual acuity, color vision, ophthalmoscopy, fundus photography, Goldmann perimetry, and full-field standard electroretinogram (ERG) from all patients were registered from medical charts over a mean follow-up of 19 years. The ABCA4, CNGB3, KCNV2, PDE6C, and RPGR genes were analyzed by direct sequencing in autosomal recessive (AR) and X-linked (XL), respectively. Genotyping was not undertaken for autosomal-dominant cases. MAIN OUTCOME MEASURES The 10-year progression of all clinical parameters and cumulative lifetime risk of low vision and legal blindness were assessed. RESULTS The mean age onset for CD was 16 years (standard deviation, 11), and of CRD 12 years (standard deviation, 11; P = 0.02). The pattern of inheritance was AR in 92% of CD and 90% of CRD. Ten years after diagnosis, 35% of CD and 51% of CRD had a bulls eye maculopathy; 70% of CRD showed absolute peripheral visual field defects and 37% of CD developed rod involvement on ERG. The mean age of legal blindness was 48 (standard error [SE], 3.1) years in CD, and 35 (SE, 1.1; P<0.001) years in CRD. ABCA4 mutations were found in 8 of 90 (9%) of AR-CD, and in 17 of 65 (26%) of AR-CRD. Other mutations were detected in CNGB3 (3/90; 3%), KCNV2 (4/90; 4%), and in PDE6C (1/90; 1%). The RPGR gene was mutated in the 2 XL-CD and in 4 of 5 (80%) of XL-CRD. ABCA4 mutations as well as age of onset <20 years were significantly associated with a faster progression to legal blindness (P<0.001). CONCLUSIONS Although CD had a slightly more favorable clinical course than CRD, both disorders progressed to legal blindness in the majority of patients. Mutations in the ABCA4 gene and early onset of disease were independent prognostic parameters for visual loss. Our data may serve as an aid in counseling patients with progressive cone disorders.
Investigative Ophthalmology & Visual Science | 2009
Christina Zeitz; Stephan Labs; Birgit Lorenz; Ursula Forster; Janne Üksti; Hester Y. Kroes; Elfride De Baere; Bart P. Leroy; Frans P.M. Cremers; Mariana Wittmer; Maria M. van Genderen; José-Alain Sahel; Isabelle Audo; Charlotte M. Poloschek; Saddek Mohand-Said; Johannes Fleischhauer; Ulrike Hüffmeier; Veselina Moskova-Doumanova; Alex V. Levin; Christian P. Hamel; Dorothee Leifert; Francis L. Munier; Daniel F. Schorderet; Eberhart Zrenner; Christoph Friedburg; Bernd Wissinger; Susanne Kohl; Wlolfgang Berger
PURPOSE Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disease. Although electroretinographic (ERG) measurements can discriminate clinical subgroups, the identification of the underlying genetic defects has been complicated for CSNB because of genetic heterogeneity, the uncertainty about the mode of inheritance, and time-consuming and costly mutation scanning and direct sequencing approaches. METHODS To overcome these challenges and to generate a time- and cost-efficient mutation screening tool, the authors developed a CSNB genotyping microarray with arrayed primer extension (APEX) technology. To cover as many mutations as possible, a comprehensive literature search was performed, and DNA samples from a cohort of patients with CSNB were first sequenced directly in known CSNB genes. Subsequently, oligonucleotides were designed representing 126 sequence variations in RHO, CABP4, CACNA1F, CACNA2D4, GNAT1, GRM6, NYX, PDE6B, and SAG and spotted on the chip. RESULTS Direct sequencing of genes known to be associated with CSNB in the study cohort revealed 21 mutations (12 novel and 9 previously reported). The resultant microarray containing oligonucleotides, which allow to detect 126 known and novel mutations, was 100% effective in determining the expected sequence changes in all known samples assessed. In addition, investigation of 34 patients with CSNB who were previously not genotyped revealed sequence variants in 18%, of which 15% are thought to be disease-causing mutations. CONCLUSIONS This relatively inexpensive first-pass genetic testing device for patients with a diagnosis of CSNB will improve molecular diagnostics and genetic counseling of patients and their families and gives the opportunity to analyze whether, for example, more progressive disorders such as cone or cone-rod dystrophies underlie the same gene defects.
Ophthalmology | 2012
Karin W. Littink; Maria M. van Genderen; Mary J. van Schooneveld; Linda Visser; Frans C. C. Riemslag; Jan E.E. Keunen; Bjorn Bakker; Marijke N. Zonneveld; Anneke I. den Hollander; Frans P.M. Cremers; L. Ingeborgh van den Born
PURPOSE To determine the genetic defect and to describe the clinical characteristics in patients with retinitis punctata albescens (RPA) and fundus albipunctatus (FAP). DESIGN Case series/observational study. PARTICIPANTS We included 13 patients affected by RPA or FAP. METHODS Thirteen patients were collected from 8 families with a retinal dystrophy characterized by tiny, yellow-white dots on funduscopy, typical for FAP or RPA. All patients underwent full ophthalmologic examinations, including visual field assessment. Fundus photography, and electroretinography were performed in 12 patients, and optical coherence tomography and fundus autofluorescence were performed in 4 patients. DNA samples of all patients were screened for mutations in RLBP1 and for mutations in RDH5 in patients who did not carry mutations in RLBP1. DNA samples of 2 sibling pairs of nonconsanguineous families who carried mutations neither in RLBP1 nor in RDH5 were analyzed by genome-wide homozygosity mapping. Sequence analysis was performed of LRAT, a candidate gene in a shared homozygous region. MAIN OUTCOME MEASURES We assessed DNA sequence variants, best-corrected visual acuity, fundus appearance, visual field measurements, electroretinogram responses, optical coherence tomography, and fundus autofluorescence. RESULTS A homozygous frameshift mutation was identified in LRAT in 4 patients with RPA. Mutations in RLBP1 were identified in 7 patients with RPA and in 1 patient with FAP and cone dystrophy. One patient had compound heterozygous mutations in RDH5 and suffered from FAP with mild maculopathy. CONCLUSIONS A genetic defect was identified in LRAT as a novel cause of RPA. LRAT is therefore the fourth gene involved in the visual cycle that may cause a white-dot retinopathy. We also revealed that mutations in RLBP1 may lead to FAP with cone dystrophy.
American Journal of Human Genetics | 2013
James A. Poulter; Musallam Al-Araimi; Ivan Conte; Maria M. van Genderen; Eamonn Sheridan; Ian M. Carr; David A. Parry; Mike Shires; Sabrina Carrella; John Bradbury; Kamron Khan; Phillis Lakeman; Panagiotis I. Sergouniotis; Andrew R. Webster; Anthony T. Moore; Bishwanath Pal; Moin D. Mohamed; Anandula Venkataramana; Vedam Lakshmi Ramprasad; Rohit Shetty; Murugan Saktivel; Govindasamy Kumaramanickavel; Alex Tan; David A. Mackey; Alex W. Hewitt; Sandro Banfi; Manir Ali; Chris F. Inglehearn; Carmel Toomes
Foveal hypoplasia and optic nerve misrouting are developmental defects of the visual pathway and only co-occur in connection with albinism; to date, they have only been associated with defects in the melanin-biosynthesis pathway. Here, we report that these defects can occur independently of albinism in people with recessive mutations in the putative glutamine transporter gene SLC38A8. Nine different mutations were identified in seven Asian and European families. Using morpholino-mediated ablation of Slc38a8 in medaka fish, we confirmed that pigmentation is unaffected by loss of SLC38A8. Furthermore, by undertaking an association study with SNPs at the SLC38A8 locus, we showed that common variants within this gene modestly affect foveal thickness in the general population. This study reveals a melanin-independent component underpinning the development of the visual pathway that requires a functional role for SLC38A8.
PLOS ONE | 2013
Mieke M. C. Bijveld; Maria M. van Genderen; Frank P. Hoeben; Amir A. Katzin; Ruth M. A. van Nispen; Frans C. C. Riemslag; Astrid M. L. Kappers
Congenital Stationary Night Blindness (CSNB) is a retinal disorder caused by a signal transmission defect between photoreceptors and bipolar cells. CSNB can be subdivided in CSNB2 (rod signal transmission reduced) and CSNB1 (rod signal transmission absent). The present study is the first in which night vision problems are assessed in CSNB patients in a systematic way, with the purpose of improving rehabilitation for these patients. We assessed the night vision problems of 13 CSNB2 patients and 9 CSNB1 patients by means of a questionnaire on low luminance situations. We furthermore investigated their dark adapted visual functions by the Goldmann Weekers dark adaptation curve, a dark adapted static visual field, and a two-dimensional version of the “Light Lab”. In the latter test, a digital image of a living room with objects was projected on a screen. While increasing the luminance of the image, we asked the patients to report on detection and recognition of objects. The questionnaire showed that the CSNB2 patients hardly experienced any night vision problems, while all CSNB1 patients experienced some problems although they generally did not describe them as severe. The three scotopic tests showed minimally to moderately decreased dark adapted visual functions in the CSNB2 patients, with differences between patients. In contrast, the dark adapted visual functions of the CSNB1 patients were more severely affected, but showed almost no differences between patients. The results from the “2D Light Lab” showed that all CSNB1 patients were blind at low intensities (equal to starlight), but quickly regained vision at higher intensities (full moonlight). Just above their dark adapted thresholds both CSNB1 and CSNB2 patients had normal visual fields. From the results we conclude that night vision problems in CSNB, in contrast to what the name suggests, are not conspicuous and generally not disabling.
Investigative Ophthalmology & Visual Science | 2014
Ramon A. C. van Huet; Clasien J. Oomen; Astrid S. Plomp; Maria M. van Genderen; B. Jeroen Klevering; Reinier O. Schlingemann; Caroline C. W. Klaver; L. Ingeborgh van den Born; Frans P.M. Cremers
Inherited retinal diseases (IRDs) represent a clinical and genetic heterogeneous group of chorioretinal disorders. The frequency of persons affected by an IRD due to mutations in the same gene varies from 1 in 10,000 to less than 1 in a million. To perform meaningful genotype-phenotype analyses for rare genetic conditions, it is necessary to collect data from sizable populations. Although several standardized functional tests are used widely, ophthalmologic data usually are stored in local databases and not in multicenter databases that are linked with other centers. To be able to register ophthalmologic data of all Dutch patients with IRDs into one database, we developed the RD5000 database (RD5000db), which can harbor all ophthalmologic and selected genetic data. Authorization rights for the management, data entry, and data sharing have been set up, rendering this database into a user-friendly, secure, and widely used repository that will facilitate future studies into molecular genetics and therapies for IRDs. The RD5000db database has the potential to grow into a European standard for the registration of data from IRDs.