Maria Raffaella Greco
University of Bari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Raffaella Greco.
Philosophical Transactions of the Royal Society B | 2014
Stephan J. Reshkin; Maria Raffaella Greco; Rosa Angela Cardone
The change of a normal, healthy cell to a transformed cell is the first step in the evolutionary arc of a cancer. While the role of oncogenes in this ‘passage’ is well known, the role of ion transporters in this critical step is less known and is fundamental to our understanding the early physiological processes of carcinogenesis. Cancer cells and tissues have an aberrant regulation of hydrogen ion dynamics leading to a reversal of the normal tissue intracellular to extracellular pH gradient (ΔpHi to ΔpHe). When this perturbation in pH dynamics occurs during carcinogenesis is less clear. Very early studies using the introduction of different oncogene proteins into cells observed a concordance between neoplastic transformation and a cytoplasmic alkalinization occurring concomitantly with a shift towards glycolysis in the presence of oxygen, i.e. ‘Warburg metabolism’. These processes may instigate a vicious cycle that drives later progression towards fully developed cancer where the reversed pH gradient becomes ever more pronounced. This review presents our understanding of the role of pH and the NHE1 in driving transformation, in determining the first appearance of the cancer ‘hallmark’ characteristics and how the use of pharmacological approaches targeting pH/NHE1 may open up new avenues for efficient treatments even during the first steps of cancer development.
Oncology Reports | 2014
Maria Raffaella Greco; Ester Antelmi; Giovanni Busco; Lorenzo Guerra; Rosa Rubino; Valeria Casavola; Stephan J. Reshkin; Rosa Angela Cardone
Degradation of the extracellular matrix (ECM) is a critical step of tumor cell invasion and requires protease-dependent proteolysis focalized at the invadopodia where the proteolysis of the ECM occurs. Most of the extracellular proteases belong to serine- or metallo-proteases and the invadopodia is where protease activity is regulated. While recent data looking at global protease activity in the growth medium reported that their activity and role in invasion is dependent on Na+/H+ exchanger 1 (NHE1)-driven extracellular acidification, there is no data on this aspect at the invadopodia, and an open question remains whether this acid extracellular pH (pHe) activation of proteases in tumor cells occurs preferentially at invadopodia. We previously reported that the NHE1 is expressed in breast cancer invadopodia and that the NHE1‑dependent acidification of the peri-invadopodial space is critical for ECM proteolysis. In the present study, using, for the first time, in situ zymography analysis, we demonstrated a concordance between NHE1 activity, extracellular acidification and protease activity at invadopodia to finely regulate ECM digestion. We demonstrated that: (i) ECM proteolysis taking place at invadopodia is driven by acidification of the peri-invadopodia microenvironment; (ii) that the proteases have a functional pHe optimum that is acidic; (iii) more than one protease is functioning to digest the ECM at these invadopodial sites of ECM proteolysis; and (iv) lowering pHe or inhibiting the NHE1 increases protease secretion while blocking protease activity changes NHE1 expression at the invadopodia.
Neoplasia | 2015
Rosa Angela Cardone; Maria Raffaella Greco; Katrine Zeeberg; Angela Zaccagnino; Mara Saccomano; Antonia Bellizzi; Philipp Bruns; Marta Menga; Christian Pilarsky; Albrecht Schwab; Frauke Alves; Holger Kalthoff; Valeria Casavola; Stephan J. Reshkin
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers principally because of early invasion and metastasis. The epidermal growth factor receptor (EGFR) is essential for PDAC development even in the presence of Kras, but its inhibition with erlotinib gives only a modest clinical response, making the discovery of novel EGFR targets of critical interest. Here, we revealed by mining a human pancreatic gene expression database that the metastasis promoter Na+/H+ exchanger (NHE1) associates with the EGFR in PDAC. In human PDAC cell lines, we confirmed that NHE1 drives both basal and EGF-stimulated three-dimensional growth and early invasion via invadopodial extracellular matrix digestion. EGF promoted the complexing of EGFR with NHE1 via the scaffolding protein Na +/H + exchanger regulatory factor 1, engaging EGFR in a negative transregulatory loop that controls the extent and duration of EGFR oncogenic signaling and stimulates NHE1. The specificity of NHE1 for growth or invasion depends on the segregation of the transient EGFR/Na +/H + exchanger regulatory factor 1/NHE1 signaling complex into dimeric subcomplexes in different lipid raftlike membrane domains. This signaling complex was also found in tumors developed in orthotopic mice. Importantly, the specific NHE1 inhibitor cariporide reduced both three-dimensional growth and invasion independently of PDAC subtype and synergistically sensitized these behaviors to low doses of erlotinib.
PLOS ONE | 2013
Ester Antelmi; Rosa Angela Cardone; Maria Raffaella Greco; Rosa Rubino; Francesca Di Sole; Nicola Antonio Martino; Valeria Casavola; MariaLuisa L. Carcangiu; Loredana Moro; Stephan J. Reshkin
Extracellular matrix (ECM) degradation is a critical process in tumor cell invasion and requires matrix degrading protrusions called invadopodia. The Na+/H+ exchanger (NHE1) has recently been shown to be fundamental in the regulation of invadopodia actin cytoskeleton dynamics and activity. However, the structural link between the invadopodia cytoskeleton and NHE1 is still unknown. A candidate could be ezrin, a linker between the NHE1 and the actin cytoskeleton known to play a pivotal role in invasion and metastasis. However, the mechanistic basis for its role remains unknown. Here, we demonstrate that ezrin phosphorylated at T567 is highly overexpressed in the membrane of human breast tumors and positively associated with invasive growth and HER2 overexpression. Further, in the metastatic cell line, MDA-MB-231, p-ezrin was almost exclusively expressed in invadopodia lipid rafts where it co-localized in a functional complex with NHE1, EGFR, ß1-integrin and phosphorylated-NHERF1. Manipulation by mutation of ezrins T567 phosphorylation state and/or PIP2 binding capacity or of NHE1s binding to ezrin or PIP2 demonstrated that p-ezrin expression and binding to PIP2 are required for invadopodia-mediated ECM degradation and invasion and identified NHE1 as the membrane protein that p-ezrin regulates to induce invadopodia formation and activity.
Molecular Biology of the Cell | 2012
Rosa Angela Cardone; Maria Raffaella Greco; Mattia Capulli; Edward J. Weinman; Giovanni Busco; Antonia Bellizzi; Valeria Casavola; Ester Antelmi; Barbara Ambruosi; Maria Elena Dell'Aquila; Angelo Paradiso; Anna Teti; Nadia Rucci; Stephan J. Reshkin
Tumor metastasis is the primary cause of death in cancer patients, but the molecular mechanisms driving the evolution of the phenotype toward a specific organ is one of its less understood aspects. The scaffolding protein NHERF1 reprograms the metastatic phenotype and organotropism via the differential function of its PDZ domains.
International Journal of Oncology | 2015
Antonia Bellizzi; Maria Raffaella Greco; Rosa Rubino; Angelo Paradiso; Stefania Forciniti; Katrine Zeeberg; Rosa Angela Cardone; Stephan J. Reshkin
Triple negative breast cancer (TNBC) patients cannot be treated with endocrine therapy or targeted therapies due to lack of related receptors. These patients overexpress the epidermal growth factor receptor (EGFR), but are resistant to tyrosine kinase inhibitors (TKIs) and anti-EGFR therapies. Mechanisms suggested for resistance to TKIs include EGFR independence, mutations and alterations in EGFR and in its downstream signalling pathways. Ligand-induced endocytosis and degradation of EGFR play important roles in the downregulation of the EGFR signal suggesting that its activity could be regulated by targeting its trafficking. Evidence in normal cells showing that the scaffolding protein Na+/H+ exchanger regulatory factor 1 (NHERF1) can associate with EGFR to regulate its trafficking, led us to hypothesize that NHERF1 expression levels could regulate EGFR trafficking and functional expression in TNBC cells and, in this way, modulate its role in progression and response to treatment. We investigated the subcellular localization of NHERF1 and its interaction with EGFR in a metastatic basal like TNBC cell model, MDA-MB‑231, and the role of forced NHERF1 overexpression and/or stimulation with EGF on the sensitivity to EGFR specific TKI treatment with gefitinib. Stimulation with EGF induces an interaction of NHERF1 with EGFR to regulate its localization, degradation and function. NHERF1 overexpression is sufficient to drive its interaction with EGFR in non-stimulated conditions, inhibits EGFR degradation and increases its retention time in the plasma membrane. Importantly, NHERF1 overexpression strongly sensitized the cell to the pharmacological inhibition by gefitinib of EGFR-driven growth, motility and invadopodia-dependent ECM proteolysis. The further determination of how the NHERF1‑EGFR interaction is regulated may improve our understanding of TNBC resistance to the action of existing anticancer drugs.
Biology of the Cell | 2016
Gerarda Grossi; Annalisa Grimaldi; Rosa Angela Cardone; Magnus Monné; Stephan J. Reshkin; Rossana Girardello; Maria Raffaella Greco; Elena Coviello; Simona Laurino; Patrizia Falabella
While enolase is a ubiquitous metalloenzyme involved in the glycolytic pathway, it is also known as a multifunctional protein, since enolases anchored on the outer surface of the plasma membrane are involved in tissue invasion.
FEBS Journal | 2018
Giulia Biondani; Katrine Zeeberg; Maria Raffaella Greco; Stefania Cannone; Ilaria Dando; Elisa Dalla Pozza; Maria Mastrodonato; Stefania Forciniti; Valeria Casavola; Marta Palmieri; Stephan J. Reshkin; Rosa Angela Cardone
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. Its aggressiveness is driven by an intense fibrotic desmoplastic reaction in which the increasingly collagen I‐rich extracellular matrix (ECM) and several cell types, including cancer stem cells (CSCs), create a tumor‐supportive environment. However, how ECM composition regulates CSC dynamics and their relationship with the principle parenchymal tumor population to promote early invasive growth is not yet characterized. For this, we utilized a platform of 3D organotypic cultures composed of laminin‐rich Matrigel, representative of an early tumor, plus increasing concentrations of collagen I to simulate malignant stroma progression. As ECM collagen I increases, CSCs progress from a rapidly growing, vascular phenotype to a slower growing, avascular phase, while maintaining their endothelial‐like gene signatures. This transition is supported autocrinically by the CSCs and paracrinically by the parenchymal cells via their ECM‐dependent secretomes. Indeed, when growing on an early tumor ECM, the CSCs are dedicated toward the preparation of a vascular niche by (a) activating their growth program, (b) secreting high levels of proangiogenic factors which stimulate both angiogenesis and vasculogenic mimicry, and (c) overexpressing VEGFR‐2, which is activated by VEGF secreted by both the CSC and parenchymal cells. On Matrigel, the more differentiated parenchymal tumor cell population had reduced growth but a high invasive capacity. This concerted high local invasion of parenchymal cells into the CSC‐derived vascular network suggests that a symbiotic relationship between the parenchymal cells and the CSCs underlies the initiation and maintenance of early PDAC infiltration and metastasis.
Biochimica et Biophysica Acta | 2019
Maria Raffaella Greco; Emeline Bon; Rosa Rubino; Lorenzo Guerra; Manuel Bernabe-Garcia; Stefania Cannone; Maria-Luisa Cayuela; Loredana Ciaccia; Séverine Marionneau-Lambot; Thibauld Oullier; Gaëlle Fromont; Roseline Guibon; Sébastien Roger; Stephan J. Reshkin; Rosa Angela Cardone
Metastatic cancer cells are highly plastic for the expression of different tumor phenotype hallmarks and organotropism. This plasticity is highly regulated but the dynamics of the signaling processes orchestrating the shift from one cell phenotype and metastatic organ pattern to another are still largely unknown. The scaffolding protein NHERF1 has been shown to regulate the expression of different neoplastic phenotypes through its PDZ domains, which forms the mechanistic basis for metastatic organotropism. This reprogramming activity was postulated to be dependent on its differential phosphorylation patterns. Here, we show that NHERF1 phosphorylation on S279/S301 dictates several tumor phenotypes such as in vivo invasion, NHE1-mediated matrix digestion, growth and vasculogenic mimicry. Remarkably, injecting mice with cells having differential NHERF1 expression and phosphorylation drove a shift from the predominantly lung colonization (WT NHERF1) to predominately bone colonization (double S279A/S301A mutant), indicating that NHERF1 phosphorylation also acts as a signaling switch in metastatic organotropism.
The FASEB Journal | 2010
Giovanni Busco; Rosa Angela Cardone; Maria Raffaella Greco; Antonia Bellizzi; Matilde Colella; Ester Antelmi; Maria Teresa Mancini; Maria Elena Dell'Aquila; Valeria Casavola; Angelo Paradiso; Stephan J. Reshkin