Maria Regueiro
Florida International University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Regueiro.
Human Heredity | 2006
Maria Regueiro; Alicia M. Cadenas; Tenzin Gayden; Peter A. Underhill; Rene J. Herrera
Due to its pivotal geographic position, present day Iran likely served as a gateway of reciprocal human movements. However, the extent to which the deserts within the Iranian plateau and the mountain ranges surrounding Persia inhibited gene flow via this corridor remains uncertain. In order to assess the magnitude of this region’s role as a nexus for Africa, Asia and Europe in human migrations, high-resolution Y-chromosome analyses were performed on 150 Iranian males. Haplogroup data were subsequently compared to regional populations characterized at similar phylogenetic levels. The Iranians display considerable haplogroup diversity consistent with patterns observed in populations of the Middle East overall, reinforcing the notion of Persia as a venue for human disseminations. Admixture analyses of geographically targeted, regional populations along the latitudinal corridor spanning from Anatolia to the Indus Valley demonstrated contributions to Persia from both the east and west. However, significant differences were uncovered upon stratification of the gene donors, including higher proportions from central east and southeast Turkey as compared to Pakistan. In addition to the modulating effects of geographic obstacles, culturally mediated amalgamations consistent with the diverse spectrum of a variety of historical empires may account for the distribution of haplogroups and lineages observed. Our study of high-resolution Y-chromosome genotyping allowed for an in-depth analysis unattained in previous studies of the area, revealing important migratory and demographic events that shaped the contemporary genetic landscape.
European Journal of Human Genetics | 2009
Sheyla Mirabal; Maria Regueiro; Alicia M Cadenas; Luigi Luca Cavalli-Sforza; Peter A. Underhill; Dmitry A. Verbenko; S. A. Limborska; Rene J. Herrera
Populations of northeastern Europe and the Uralic mountain range are found in close geographic proximity, but they have been subject to different demographic histories. The current study attempts to better understand the genetic paternal relationships of ethnic groups residing in these regions. We have performed high-resolution haplotyping of 236 Y-chromosomes from populations in northwestern Russia and the Uralic mountains, and compared them to relevant previously published data. Haplotype variation and age estimation analyses using 15 Y-STR loci were conducted for samples within the N1b, N1c1 and R1a1 single-nucleotide polymorphism backgrounds. Our results suggest that although most genetic relationships throughout Eurasia are dependent on geographic proximity, members of the Uralic and Slavic linguistic families and subfamilies, yield significant correlations at both levels of comparison making it difficult to denote either linguistics or geographic proximity as the basis for their genetic substrata. Expansion times for haplogroup R1a1 date approximately to 18 000 YBP, and age estimates along with Network topology of populations found at opposite poles of its range (Eastern Europe and South Asia) indicate that two separate haplotypic foci exist within this haplogroup. Data based on haplogroup N1b challenge earlier findings and suggest that the mutation may have occurred in the Uralic range rather than in Siberia and much earlier than has been proposed (12.9±4.1 instead of 5.2±2.7 kya). In addition, age and variance estimates for haplogroup N1c1 suggest that populations from the western Urals may have been genetically influenced by a dispersal from northeastern Europe (eg, eastern Slavs) rather than the converse.
Human Genetics | 2010
Naiara Rodríguez-Ezpeleta; Jon Álvarez-Busto; Liher Imaz; Maria Regueiro; María Nerea Azcárate; Roberto Bilbao; Mikel Iriondo; Ana María Sainz Gil; Andone Estonba; Ana M. Aransay
A recent study reported that Basques do not constitute a genetically distinct population, and that Basques from Spanish and French provinces do not show significant genetic similarity. These conclusions disagree with numerous previous studies, and are not consistent with the historical and linguistic evidence that supports the distinctiveness of Basques. In order to further investigate this controversy, we have genotyped 83 Spanish Basque individuals and used these data to infer population structure based on more than 60,000 single nucleotide polymorphisms of several European populations. Here, we present the first high-throughput analysis including Basques from Spanish and French provinces, and show that all Basques constitute a homogeneous group that can be clearly differentiated from other European populations.
Gene | 2013
Robert K. Lowery; Gabriel Uribe; Eric Jimenez; Mark Allen Weiss; Kristian J. Herrera; Maria Regueiro; Rene J. Herrera
Analyses of the genetic relationships among modern humans, Neanderthals and Denisovans have suggested that 1-4% of the non-Sub-Saharan African gene pool may be Neanderthal derived, while 6-8% of the Melanesian gene pool may be the product of admixture between the Denisovans and the direct ancestors of Melanesians. In the present study, we analyzed single nucleotide polymorphism (SNP) diversity among a worldwide collection of contemporary human populations with respect to the genetic constitution of these two archaic hominins and Pan troglodytes (chimpanzee). We partitioned SNPs into subsets, including those that are derived in both archaic lineages, those that are ancestral in both archaic lineages and those that are only derived in one archaic lineage. By doing this, we have conducted separate examinations of subsets of mutations with higher probabilities of divergent phylogenetic origins. While previous investigations have excluded SNPs from common ancestors in principal component analyses, we included common ancestral SNPs in our analyses to visualize the relative placement of the Neanderthal and Denisova among human populations. To assess the genetic similarities among the various hominin lineages, we performed genetic structure analyses to provide a comparison of genetic patterns found within contemporary human genomes that may have archaic or common ancestral roots. Our results indicate that 3.6% of the Neanderthal genome is shared with roughly 65.4% of the average European gene pool, which clinally diminishes with distance from Europe. Our results suggest that Neanderthal genetic associations with contemporary non-Sub-Saharan African populations, as well as the genetic affinities observed between Denisovans and Melanesians most likely result from the retention of ancient mutations in these populations.
European Journal of Human Genetics | 2012
Kristian J. Herrera; Robert K. Lowery; Laura R. M. Hadden; Silvia Calderon; Carolina Chiou; Levon Yepiskoposyan; Maria Regueiro; Peter A. Underhill; Rene J. Herrera
Armenia, situated between the Black and Caspian Seas, lies at the junction of Turkey, Iran, Georgia, Azerbaijan and former Mesopotamia. This geographic position made it a potential contact zone between Eastern and Western civilizations. In this investigation, we assess Y-chromosomal diversity in four geographically distinct populations that represent the extent of historical Armenia. We find a striking prominence of haplogroups previously implicated with the Agricultural Revolution in the Near East, including the J2a-M410-, R1b1b1*-L23-, G2a-P15- and J1-M267-derived lineages. Given that the Last Glacial Maximum event in the Armenian plateau occured a few millennia before the Neolithic era, we envision a scenario in which its repopulation was achieved mainly by the arrival of farmers from the Fertile Crescent temporally coincident with the initial inception of farming in Greece. However, we detect very restricted genetic affinities with Europe that suggest any later cultural diffusions from Armenia to Europe were not associated with substantial amounts of paternal gene flow, despite the presence of closely related Indo-European languages in both Armenia and Southeast Europe.
Journal of Human Genetics | 2009
Maria C. Terreros; Miguel A. Alfonso-Sánchez; Gabriel E. Novick; Javier R. Luis; Harlette Lacau; Robert K. Lowery; Maria Regueiro; Rene J. Herrera
We analyzed the genetic profile of 563 individuals from 12 geographically targeted human populations from Europe, Asia and Africa using 27 human-specific polymorphic Alu insertions. Phylogenetic analyses indicated a clear correspondence between genetic profiles and historical patterns of gene flow and genetic drift. Sub-Saharan African populations (Benin, Cameroon, Kenya and Rwanda) formed a visibly differentiated cluster, indicating the role of the Sahara desert as a strong natural barrier to gene flow. Moreover, a higher than expected genetic affinity between populations from Europe, North Africa and Asia was detected, probably reflecting the homogenizing effects of bidirectional migratory processes between Eurasia and North Africa during the Plio-Pleistocene and Neolithic periods or the insensitivity of these markers in discriminating between these groups. The Ami aborigines of Formosa present a distinctive degree of genetic uniqueness from all the other groups, consistent with a pattern of isolation by distance, small population size and, accordingly, substantial genetic drift. We further tested all 27 Alu loci for their potential usefulness as ancestry informative markers (AIMs). On the basis of differences between weighted allelic frequencies (δ-values) and FST values, we propose that 11 of the 27 Alu elements could be useful as part of the current AIM panels to assess phylogenetic relationships.
Electrophoresis | 2008
Tenzin Gayden; Maria Regueiro; Laisel Martinez; Alicia M. Cadenas; Rene J. Herrera
We describe the application of allele‐specific PCR (AS‐PCR) for screening biallelic markers, including SNPs, within the nonrecombining region of the human Y‐chromosome (NRY). The AS‐PCR method is based on the concept that the perfectly annealed primer–template complex is more stable, and therefore, more efficiently amplified under the appropriate annealing temperature than the complex with a mismatched 3′‐residue. Furthermore, a mismatched nucleotide at the primers 3′‐OH end provides for a poor extension substrate for Taq DNA polymerase, allowing for discrimination between the two alleles. This method has the dual advantage of amplification and detection of alleles in a single expeditious and inexpensive procedure. The amplification conditions of over 50 binary markers, mostly SNPs, that define the major Y‐haplogroups as well as their derived lineages were optimized and are provided for the first time. In addition, artificial restriction sites were designed for those markers that are not selectively amplified by AS‐PCR. Our results are consistent with allele designations derived from other techniques such as RFLP and direct sequencing of PCR products.
Legal Medicine | 2011
Harlette Lacau; Areej Bukhari; Tenzin Gayden; Joel La Salvia; Maria Regueiro; Oliver Stojkovic; Rene J. Herrera
Afghanistans unique geostrategic position in Eurasia has historically attracted commerce, conflict and conquest to the region. It was also an important stop along the Silk Road, connecting the far eastern civilizations with the western world. Nevertheless, limited genetic studies have been performed in Afghan populations. In this study, 17 Y-chromosomal short tandem repeat (Y-STR) loci were typed to evaluate their forensic and population genetic applications in 189 unrelated Afghan males geographically partitioned along the Hindu Kush Mountain range into north (N=44) and south (N=145) populations. North Afghanistan (0.9734, 0.9905) exhibits higher haplotype diversity than south Afghanistan (0.9408, 0.9813) at both the minimal 9-loci and 17-loci Yfiler haplotypes, respectively. The overall haplotype diversity for both Afghan populations at 17 Y-STR loci is 0.9850 and the corresponding value for the minimal 9-loci haplotypes is 0.9487. A query using of the most frequent Afghan Yfiler haplotype (7.98%) against the worldwide Y-STR haplotype reference database (YHRD) returned no profile match, indicating a high power of discrimination with 17 Y-STR loci. A median-joining network based on 15 Y-STR loci displays limited haplotype sharing between the two Afghan populations, possibly due to the Hindu Kush Mountain range serving as a natural barrier to gene flow between the two regions.
American Journal of Physical Anthropology | 2010
Sheyla Mirabal; Tatjana Varljen; Tenzin Gayden; Maria Regueiro; Slavica Vujovic; Danica Popovic; Marija Djuric; Oliver Stojkovic; Rene J. Herrera
Southeastern Europe and, particularly, the Balkan Peninsula are especially useful when studying the mechanisms responsible for generating the current distribution of Paleolithic and Neolithic genetic signals observed throughout Europe. In this study, 404 individuals from Montenegro and 179 individuals from Serbia were typed for 17 Y-STR loci and compared across 9 Y-STR loci to geographically targeted previously published collections to ascertain the phylogenetic relationships of populations within the Balkan Peninsula and beyond. We aim to provide information on whether groups in the region represent an amalgamation of Paleolithic and Neolithic genetic substrata, or whether acculturation has played a critical role in the spread of agriculture. We have found genetic markers of Middle Eastern, south Asian and European descent in the area, however, admixture analyses indicate that over 80% of the Balkan gene pool is of European descent. Altogether, our data support the view that the diffusion of agriculture into the Balkan region was mostly a cultural phenomenon although some genetic infiltration from Africa, the Levant, the Caucasus, and the Near East has occurred.
American Journal of Physical Anthropology | 2013
Maria Regueiro; Joseph Alvarez; Diane J. Rowold; Rene J. Herrera
Given the importance of Y-chromosome haplogroup Q to better understand the source populations of contemporary Native Americans, we studied 8 biallelic and 17 microsatellite polymorphisms on the background of 128 Q Y-chromosomes from geographically targeted populations. The populations examined in this study include three from the Tuva Republic in Central Asia (Bai-Tai, Kungurtug, and Toora-Hem, n = 146), two from the northeastern tip of Siberia (New Chaplino and Chukchi, n = 32), and two from Mesoamerica (Mayans from Yucatan, Mexico n = 72, and Mayans from the Guatemalan Highlands, n = 43). We also see evidence of a dramatic Mesoamerican post-migration population growth in the ubiquitous and diverse Y-STR profiles of the Mayan and other Mesoamerican populations. In the case of the Mayans, this demographic growth was most likely fueled by the agricultural- and trade-based subsistence adopted during the Pre-Classic, Classic and Post-Classic periods of their empire. The limited diversity levels observed in the Altaian and Tuvinian regions of Central Asia, the lowest of all populations examined, may be the consequence of bottleneck events fostered by the spatial isolation and low effective population size characteristic of a nomadic lifestyle. Furthermore, our data illustrate how a sociocultural characteristic such as mode of subsistence may be of impact on the genetic structure of populations. We analyzed our genetic data using Multidimensional Scaling Analysis of populations, Principal Component Analysis of individuals, Median-joining networks of M242, M346, L54, and M3 individuals, age estimations based on microsatellite variation utilizing genealogical and evolutionary mutation rates/generation times and estimation of Y- STR average gene diversity indices.