Marie-Charlotte Domart
London Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie-Charlotte Domart.
Ultramicroscopy | 2014
Christopher J. Peddie; Ken Blight; Emma Wilson; Charlotte Melia; Jo Marrison; Raffaella Carzaniga; Marie-Charlotte Domart; Peter O’Toole; Banafshé Larijani; Lucy M. Collinson
Fluorescence microscopy of GFP-tagged proteins is a fundamental tool in cell biology, but without seeing the structure of the surrounding cellular space, functional information can be lost. Here we present a protocol that preserves GFP and mCherry fluorescence in mammalian cells embedded in resin with electron contrast to reveal cellular ultrastructure. Ultrathin in-resin fluorescence (IRF) sections were imaged simultaneously for fluorescence and electron signals in an integrated light and scanning electron microscope. We show, for the first time, that GFP is stable and active in resin sections in vacuo. We applied our protocol to study the subcellular localisation of diacylglycerol (DAG), a modulator of membrane morphology and membrane dynamics in nuclear envelope assembly. We show that DAG is localised to the nuclear envelope, nucleoplasmic reticulum and curved tips of the Golgi apparatus. With these developments, we demonstrate that integrated imaging is maturing into a powerful tool for accurate molecular localisation to structure.
Nature Communications | 2016
Eleftherios Karanasios; Simon Walker; Hanneke Okkenhaug; Maria Manifava; Eric Hummel; Hans Zimmermann; Qashif Ahmed; Marie-Charlotte Domart; Lucy M. Collinson; Nicholas T. Ktistakis
Autophagosome formation requires sequential translocation of autophagy-specific proteins to membranes enriched in PI3P and connected to the ER. Preceding this, the earliest autophagy-specific structure forming de novo is a small punctum of the ULK1 complex. The provenance of this structure and its mode of formation are unknown. We show that the ULK1 structure emerges from regions, where ATG9 vesicles align with the ER and its formation requires ER exit and coatomer function. Super-resolution microscopy reveals that the ULK1 compartment consists of regularly assembled punctate elements that cluster in progressively larger spherical structures and associates uniquely with the early autophagy machinery. Correlative electron microscopy after live imaging shows tubulovesicular membranes present at the locus of this structure. We propose that the nucleation of autophagosomes occurs in regions, where the ULK1 complex coalesces with ER and the ATG9 compartment.
PLOS ONE | 2012
Marie-Charlotte Domart; Tina M. C. Hobday; Christopher J. Peddie; Gary H. C. Chung; Alan Wang; Karen Yeh; Nirmal Jethwa; Qifeng Zhang; Michael J. O. Wakelam; Rudiger Woscholski; Richard D. Byrne; Lucy M. Collinson; Dominic Poccia; Banafshé Larijani
The functions and morphology of cellular membranes are intimately related and depend not only on their protein content but also on the repertoire of lipids that comprise them. In the absence of in vivo data on lipid asymmetry in endomembranes, it has been argued that motors, scaffolding proteins or integral membrane proteins rather than non-lamellar bilayer lipids such as diacylglycerol (DAG), are responsible for shaping of organelles, local membrane curvature and fusion. The effects of direct alteration of levels of such lipids remain predominantly uninvestigated. Diacylglycerol (DAG) is a well documented second messenger. Here we demonstrate two additional conserved functions of DAG: a structural role in organelle morphology, and a role in localised extreme membrane curvature required for fusion for which proteins alone are insufficient. Acute and inducible DAG depletion results in failure of the nuclear envelope (NE) to reform at mitosis and reorganisation of the ER into multi-lamellar sheets as revealed by correlative light and electron microscopy and 3D reconstructions. Remarkably, depleted cells divide without a complete NE, and unless rescued by 1,2 or 1,3 DAG soon die. Attenuation of DAG levels by enzyme microinjection into echinoderm eggs and embryos also results in alterations of ER morphology and nuclear membrane fusion. Our findings demonstrate that DAG is an in vivo modulator of organelle morphology in mammalian and echinoderm cells, indicating a fundamental role conserved across the deuterostome superphylum.
Nature Methods | 2017
Perrine Paul-Gilloteaux; Xavier Heiligenstein; Martin Belle; Marie-Charlotte Domart; Banafshé Larijani; Lucy M. Collinson; Graça Raposo; Jean Salamero
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form (electronic or otherwise) without prior permission from [email protected].
Science | 2017
Nuria Martinez-Martin; Paula Maldonado; Francesca Gasparrini; Bruno Frederico; Shweta Aggarwal; Mauro Gaya; Carlson Tsui; Marianne Burbage; Selina Jessica Keppler; Beatriz Montaner; Harold B.J. Jefferies; Usha Nair; Yan G. Zhao; Marie-Charlotte Domart; Lucy M. Collinson; Andreas Bruckbauer; Sharon A. Tooze; Facundo D. Batista
Change for good In the immune system, autophagy has been implicated in the maintenance and survival of plasma and memory cells, but its role in B cells during early viral infection remains unclear. Martinez-Martin et al. investigated the role of autophagy in B cells by using a combination of innovative imaging, pharmacological agents, and genetic models. B cell activation triggered an increase in the rate of autophagy and also switched the mechanism from canonical autophagy to noncanonical pathways involving the regulator WIPI2. Genetic ablation of WIPI2 in B cells promoted noncanonical autophagy. WIPI2 restrains noncanonical autophagy upon B cell activation through a mechanism involving mitochondrial status. Thus, the switch from canonical to noncanonical autophagy regulates B cell differentiation and fate during viral infection. Science, this issue p. 641 An unusual form of autophagy is triggered after immunological B cell activation and tunes B cell responses to viral infection. Autophagy is important in a variety of cellular and pathophysiological situations; however, its role in immune responses remains elusive. Here, we show that among B cells, germinal center (GC) cells exhibited the highest rate of autophagy during viral infection. In contrast to mechanistic target of rapamycin complex 1–dependent canonical autophagy, GC B cell autophagy occurred predominantly through a noncanonical pathway. B cell stimulation was sufficient to down-regulate canonical autophagy transiently while triggering noncanonical autophagy. Genetic ablation of WD repeat domain, phosphoinositide–interacting protein 2 in B cells alone enhanced this noncanonical autophagy, resulting in changes of mitochondrial homeostasis and alterations in GC and antibody-secreting cells. Thus, B cell activation prompts a temporal switch from canonical to noncanonical autophagy that is important in controlling B cell differentiation and fate.
Journal of Cell Science | 2017
Matthew R.G. Russell; Thomas R. Lerner; Jemima J. Burden; David O. Nkwe; Annegret Pelchen-Matthews; Marie-Charlotte Domart; Joanne Durgan; Anne Weston; Martin L. Jones; Christopher J. Peddie; Raffaella Carzaniga; Oliver Florey; Mark Marsh; Maximiliano G. Gutierrez; Lucy M. Collinson
ABSTRACT The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research. Summary: A new workflow for 3D correlative light and electron microscopy of cell monolayers, applied to studies of M.-tuberculosis-infected cells, HIV-1-infected cells and entotic cell-in-cell structures.
Journal of Structural Biology | 2017
Christopher J. Peddie; Marie-Charlotte Domart; Xenia Snetkov; Peter O'Toole; Banafshé Larijani; Michael Way; Susan Cox; Lucy M. Collinson
Super-resolution light microscopy, correlative light and electron microscopy, and volume electron microscopy are revolutionising the way in which biological samples are examined and understood. Here, we combine these approaches to deliver super-accurate correlation of fluorescent proteins to cellular structures. We show that YFP and GFP have enhanced blinking properties when embedded in acrylic resin and imaged under partial vacuum, enabling in vacuo single molecule localisation microscopy. In conventional section-based correlative microscopy experiments, the specimen must be moved between imaging systems and/or further manipulated for optimal viewing. These steps can introduce undesirable alterations in the specimen, and complicate correlation between imaging modalities. We avoided these issues by using a scanning electron microscope with integrated optical microscope to acquire both localisation and electron microscopy images, which could then be precisely correlated. Collecting data from ultrathin sections also improved the axial resolution and signal-to-noise ratio of the raw localisation microscopy data. Expanding data collection across an array of sections will allow 3-dimensional correlation over unprecedented volumes. The performance of this technique is demonstrated on vaccinia virus (with YFP) and diacylglycerol in cellular membranes (with GFP).
eLife | 2017
Joanne Durgan; Yun-Yu Tseng; Jens C. Hamann; Marie-Charlotte Domart; Lucy M. Collinson; Alan Hall; Michael Overholtzer; Oliver Florey
Entosis is a form of epithelial cell cannibalism that is prevalent in human cancer, typically triggered by loss of matrix adhesion. Here, we report an alternative mechanism for entosis in human epithelial cells, driven by mitosis. Mitotic entosis is regulated by Cdc42, which controls mitotic morphology. Cdc42 depletion enhances mitotic deadhesion and rounding, and these biophysical changes, which depend on RhoA activation and are phenocopied by Rap1 inhibition, permit subsequent entosis. Mitotic entosis occurs constitutively in some human cancer cell lines and mitotic index correlates with cell cannibalism in primary human breast tumours. Adherent, wild-type cells can act efficiently as entotic hosts, suggesting that normal epithelia may engulf and kill aberrantly dividing neighbours. Finally, we report that Paclitaxel/taxol promotes mitotic rounding and subsequent entosis, revealing an unconventional activity of this drug. Together, our data uncover an intriguing link between cell division and cannibalism, of significance to both cancer and chemotherapy. DOI: http://dx.doi.org/10.7554/eLife.27134.001
Biochemical Society Transactions | 2014
Banafshé Larijani; Fadi Hamati; Aupola Kundu; Gary C. Chung; Marie-Charlotte Domart; Lucy M. Collinson; Dominic Poccia
To suggest and develop intelligent strategies to comprehend the regulation of organelle formation, a deeper mechanistic interpretation requires more than just the involvement of proteins. Our approaches link the formation of endomembranes with both signalling and membrane physical properties. Hitherto, membrane morphology, local physical structure and signalling have not been well integrated. Our studies derive from a cross-disciplinary approach undertaken to determine the molecular mechanisms of nuclear envelope assembly in echinoderm and mammalian cells. Our findings have led to the demonstration of a direct role for phosphoinositides and their derivatives in nuclear membrane formation. We have shown that phosphoinositides and their derivatives, as well as acting as second messengers, are modulators of membrane morphology, and their modifying enzymes regulate nuclear envelope formation. In addition, we have shown that echinoderm eggs can be exploited as a milieu to directly study the roles of phospholipids in maintaining organelle shape. The use of the echinoderm egg is a significant step forward in obtaining direct information about membrane physical properties in situ rather than using simpler models which do not provide a complete mechanistic insight into the role of phospholipids in membrane dynamics.
Journal of Lipid Research | 2018
Gary Hong Chun Chung; Marie-Charlotte Domart; Christopher J. Peddie; Judith Mantell; Kieran Mclaverty; Angela Arabiotorre; Lorna Hodgson; Richard D. Byrne; Paul Verkade; Kenton P. Arkill; Lucy M. Collinson; Banafshé Larijani
Dysregulation of nuclear envelope (NE) assembly results in various cancers; for example, renal and some lung carcinomas ensue due to NE malformation. The NE is a dynamic membrane compartment and its completion during mitosis is a highly regulated process, but the detailed mechanism still remains incompletely understood. Previous studies have found that isolated diacylglycerol (DAG)-containing vesicles are essential for completing the fusion of the NE in nonsomatic cells. We investigated the impact of DAG depletion from the cis-Golgi in mammalian cells on NE reassembly. Using advanced electron microscopy, we observed an enriched DAG population of vesicles at the vicinity of the NE gaps of telophase mammalian cells. We applied a mini singlet oxygen generator-C1-domain tag that localized DAG-enriched vesicles at the perinuclear region, which suggested the existence of NE fusogenic vesicles. We quantified the impact of Golgi-DAG depletion by measuring the in situ NE rim curvature of the reforming NE. The rim curvature in these cells was significantly reduced compared with controls, which indicated a localized defect in NE morphology. Our novel results demonstrate the significance of the role of DAG from the cis-Golgi for the regulation of NE assembly.