Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marijke Jozefczak is active.

Publication


Featured researches published by Marijke Jozefczak.


Biometals | 2010

Cadmium stress: an oxidative challenge

Ann Cuypers; Michelle Plusquin; Tony Remans; Marijke Jozefczak; Els Keunen; Heidi Gielen; Kelly Opdenakker; Elke Munters; Tom Artois; Tim S. Nawrot; Jaco Vangronsveld; Kelly Smeets

At the cellular level, cadmium (Cd) induces both damaging and repair processes in which the cellular redox status plays a crucial role. Being not redox-active, Cd is unable to generate reactive oxygen species (ROS) directly, but Cd-induced oxidative stress is a common phenomenon observed in multiple studies. The current review gives an overview on Cd-induced ROS production and anti-oxidative defense in organisms under different Cd regimes. Moreover, the Cd-induced oxidative challenge is discussed with a focus on damage and signaling as downstream responses. Gathering these data, it was clear that oxidative stress related responses are affected during Cd stress, but the apparent discrepancies observed in between the different studies points towards the necessity to increase our knowledge on the spatial and temporal ROS signature under Cd stress. This information is essential in order to reveal the exact role of Cd-induced oxidative stress in the modulation of downstream responses under a diverse array of conditions.


International Journal of Molecular Sciences | 2012

Glutathione Is a Key Player in Metal-Induced Oxidative Stress Defenses

Marijke Jozefczak; Tony Remans; Jaco Vangronsveld; Ann Cuypers

Since the industrial revolution, the production, and consequently the emission of metals, has increased exponentially, overwhelming the natural cycles of metals in many ecosystems. Metals display a diverse array of physico-chemical properties such as essential versus non-essential and redox-active versus non-redox-active. In general, all metals can lead to toxicity and oxidative stress when taken up in excessive amounts, imposing a serious threat to the environment and human health. In order to cope with different kinds of metals, plants possess defense strategies in which glutathione (GSH; γ-glu-cys-gly) plays a central role as chelating agent, antioxidant and signaling component. Therefore, this review highlights the role of GSH in: (1) metal homeostasis; (2) antioxidative defense; and (3) signal transduction under metal stress. The diverse functions of GSH originate from the sulfhydryl group in cysteine, enabling GSH to chelate metals and participate in redox cycling.


Plant Cell and Environment | 2012

Phytoextraction of toxic metals: a central role for glutathione

C.S. Seth; Tony Remans; Els Keunen; Marijke Jozefczak; Heidi Gielen; Kelly Opdenakker; Nele Weyens; Jaco Vangronsveld; Ann Cuypers

Phytoextraction has a promising potential as an environmentally friendly clean-up method for soils contaminated with toxic metals. To improve the development of efficient phytoextraction strategies, better knowledge regarding metal uptake, translocation and detoxification in planta is a prerequisite. This review highlights our current understanding on these mechanisms, and their impact on plant growth and health. Special attention is paid to the central role of glutathione (GSH) in this process. Because of the high affinity of metals to thiols and as a precursor for phytochelatins (PCs), GSH is an essential metal chelator. Being an important antioxidant, a direct link between metal detoxification and the oxidative challenge in plants growing on contaminated soils is observed, where GSH could be a key player. In addition, as redox couple, oxidized and reduced GSH transmits specific information, in this way tuning cellular signalling pathways under environmental stress conditions. Possible improvements of phytoextraction could be achieved by using transgenic plants or plant-associated microorganisms. Joined efforts should be made to cope with the challenges faced with phytoextraction in order to successfully implement this technique in the field.


Plant Physiology and Biochemistry | 2014

Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity.

Marijke Jozefczak; Els Keunen; Henk Schat; Mattijs Bliek; Luis E. Hernández; Robert Carleer; Tony Remans; Sacha Bohler; Jaco Vangronsveld; Ann Cuypers

This study aims to uncover the spatiotemporal involvement of glutathione (GSH) in two major mechanisms of cadmium (Cd)-induced detoxification (i.e. chelation and antioxidative defence). A kinetic study was conducted on hydroponically grown Arabidopsis thaliana (L. Heyhn) to gain insight into the early events after exposure to Cd. Cadmium detoxification was investigated at different levels, including gene transcripts, enzyme activities and metabolite content. Data indicate a time-dependent response both within roots and between plant organs. Early on in roots, GSH was preferentially allocated to phytochelatin (PC) synthesis destined for Cd chelation. This led to decreased GSH levels, without alternative pathways activated to complement GSHs antioxidative functions. After one day however, multiple antioxidative pathways increased including superoxide dismutase (SOD), ascorbate (AsA) and catalase (CAT) to ensure efficient neutralization of Cd-induced reactive oxygen species (ROS). As a consequence of Cd retention and detoxification in roots, a delayed response occurred in leaves. Together with high leaf thiol contents and possibly signalling responses from the roots, the leaves were protected, allowing them sufficient time to activate their defence mechanisms.


Archive | 2012

Cadmium and Copper Stress Induce a Cellular Oxidative Challenge Leading to Damage Versus Signalling

Ann Cuypers; Els Keunen; Sacha Bohler; Marijke Jozefczak; Kelly Opdenakker; Heidi Gielen; Hanne Vercampt; An Bielen; Kerim Schellingen; Jaco Vangronsveld; Tony Remans

Contamination of soils with the potentially toxic elements cadmium (Cd) and copper (Cu) affects plant growth and crop production, and bioaccumulation in the food chain poses a threat to human health. Toxic levels of Cd or Cu both impose an oxidative challenge on plants, even though these trace elements have a different chemical (non-redox active versus redox-active) and biological (non-essential versus essential element) behaviour. Through (in)direct mechanisms, Cd and Cu cause an increased production of reactive oxygen species (ROS) as well as interference with redox-regulated compounds in different cellular compartments. This chapter highlights general and/or specific mechanisms of interference with the cellular redox homeostasis by Cd and Cu, which may be part of the sensing mechanism to these stresses. Furthermore, it emphasises the metal-induced oxidative challenge and its involvement in either cellular damage and/or downstream signalling responses.


Frontiers in Plant Science | 2016

Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity

Ann Cuypers; Sophie Hendrix; Rafaela Reis; Stefanie De Smet; Jana Deckers; Heidi Gielen; Marijke Jozefczak; Christophe Loix; Hanne Vercampt; Jaco Vangronsveld; Els Keunen

Plants exposed to excess metals are challenged by an increased generation of reactive oxygen species (ROS) such as superoxide (O2•-), hydrogen peroxide (H2O2) and the hydroxyl radical (•OH). The mechanisms underlying this oxidative challenge are often dependent on metal-specific properties and might play a role in stress perception, signaling and acclimation. Although ROS were initially considered as toxic compounds causing damage to various cellular structures, their role as signaling molecules became a topic of intense research over the last decade. Hydrogen peroxide in particular is important in signaling because of its relatively low toxicity, long lifespan and its ability to cross cellular membranes. The delicate balance between its production and scavenging by a plethora of enzymatic and metabolic antioxidants is crucial in the onset of diverse signaling cascades that finally lead to plant acclimation to metal stress. In this review, our current knowledge on the dual role of ROS in metal-exposed plants is presented. Evidence for a relationship between H2O2 and plant metal tolerance is provided. Furthermore, emphasis is put on recent advances in understanding cellular damage and downstream signaling responses as a result of metal-induced H2O2 production. Finally, special attention is paid to the interaction between H2O2 and other signaling components such as transcription factors, mitogen-activated protein kinases, phytohormones and regulating systems (e.g. microRNAs). These responses potentially underlie metal-induced senescence in plants. Elucidating the signaling network activated during metal stress is a pivotal step to make progress in applied technologies like phytoremediation of polluted soils.


Plant Physiology and Biochemistry | 2013

A mutant of the Arabidopsis thaliana LIPOXYGENASE1 gene shows altered signalling and oxidative stress related responses after cadmium exposure.

Els Keunen; Tony Remans; Kelly Opdenakker; Marijke Jozefczak; Heidi Gielen; Yves Guisez; Jaco Vangronsveld; Ann Cuypers

Lipoxygenases (LOXes, EC 1.13.11.12) are involved in growth, development and responses to stress. Earlier results suggested a role in stress generation, signalling and/or responses when Arabidopsis thaliana is exposed to cadmium (Cd), and expression of the cytosolic LOX1 was highly upregulated in the roots after Cd exposure. To investigate the involvement of LOX1 in early metal stress responses, three-week-old wild-type and lox1-1 mutant A. thaliana plants were acutely (24 h) exposed to realistic Cd concentrations (5 and 10 μM) and several oxidative stress and signalling related parameters were studied at transcriptional and biochemical levels. Transcription of several genes encoding ROS producing and scavenging enzymes failed to be induced up to wild-type levels after Cd exposure. Expression of 9-LOX enzymes was inhibited in lox1-1 mutant roots due to lack of functional LOX1 and downregulated LOX5 expression, and the lox1-1 mutation also interfered with the expression of genes involved in jasmonate biosynthesis. LOX1 and RBOHD may be involved in stress signalling from roots to shoots, as the induction of APX2 expression, which is dependent on RBOHD activity, was disrupted in lox1-1 while RBOHD failed to be upregulated. A different pattern of H(2)O(2) production and ascorbate and glutathione levels in lox1-1 mutants after Cd exposure may have indirectly influenced gene expression patterns. Although indirect effects of the lox1-1 mutation on gene expression complicate the determination of exact sensing - signalling - response pathways, the results presented here outline a more refined LOX1 functioning in Cd-induced stress responses that could be used in studies determining the exact involvement of LOX1 in these pathways.


Annals of Botany | 2015

Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of arabidopsis to cadmium

Marijke Jozefczak; Sacha Bohler; Henk Schat; Nele Horemans; Yves Guisez; Tony Remans; Jaco Vangronsveld; Ann Cuypers

Background and Aims Cadmium (Cd) is a non-essential trace element that elicits oxidative stress. Plants respond to Cd toxicity via increasing their Cd-chelating and antioxidative capacities. They predominantly chelate Cd via glutathione (GSH) and phytochelatins (PCs), while antioxidative defence is mainly based on the use and recycling of both GSH and ascorbate (AsA), complemented by superoxide dismutase (SOD) and catalase (CAT). In addition, both metabolites act as a substrate for the regeneration of other essential antioxidants, which neutralize and regulate reactive oxygen species (ROS). Together, these functions influence the concentration and cellular redox state of GSH and AsA. In this study, these two parameters were examined in plants of Arabidopsis thaliana exposed to sub-lethal Cd concentrations. Methods Wild-type plants and mutant arabidopsis plants containing 30–45 % of wild-type levels of GSH (cad2-1) or 40–50 % of AsA (vtc1-1), together with the double-mutant (cad2-1 vtc1-1) were cultivated in a hydroponic system and exposed to sub-lethal Cd concentrations. Cadmium detoxification was investigated at different levels including gene expression and metabolite concentrations. Key Results In comparison with wild-type plants, elevated basal thiol levels and enhanced PC synthesis upon exposure to Cd efficiently compensated AsA deficiency in vtc1-1 plants and contributed to decreased sensitivity towards Cd. Glutathione-deficient (cad2-1 and cad2-1 vtc1-1) mutants, however, showed a more oxidized GSH redox state, resulting in initial oxidative stress and a higher sensitivity to Cd. In order to cope with the Cd stress to which they were exposed, GSH-deficient mutants activated multiple alternative pathways. Conclusions Our observations indicate that GSH and AsA deficiency differentially alter plant GSH homeostasis, resulting in opposite Cd sensitivities relative to wild-type plants. Upon Cd exposure, GSH-deficient mutants were hampered in chelation. They experienced phenotypic disturbances and even more oxidative stress, and therefore activated multiple alternative pathways such as SOD, CAT and ascorbate peroxidase, indicating a higher Cd sensitivity. Ascorbate deficiency, however, was associated with enhanced PC synthesis in comparison with wild-type plants after Cd exposure, which contributed to decreased sensitivity towards Cd.


Environmental and Experimental Botany | 2013

Alternative respiration as a primary defence during cadmium-induced mitochondrial oxidative challenge in Arabidopsis thaliana

Els Keunen; Marijke Jozefczak; Tony Remans; Jaco Vangronsveld; Ann Cuypers

a b s t r a c t Plant growth and development can be highly restricted by environmental stressors such as cadmium (Cd) pollution. The mitochondrial non-phosphorylating alternative respiratory pathway, mediated by alternative oxidase (AOX), alternative NAD(P)H dehydrogenases (NDs) and uncoupling protein (UCP), was suggested to be crucial in the acclimation of plants to fluctuating environmental conditions. Therefore, we examined the effects of environmentally realistic Cd exposure (5 and 10 M) on the alternative respiratory chain in Arabidopsis thaliana using a kinetic exposure setup. We demonstrated that during exposure to Cd, Arabidopsis seedlings show a mitochondrial oxidative challenge to which they acutely respond by increasing the transcript level of several AOX, ND and UCP isoforms in both roots and leaves. In addition, AOX protein levels increased during acute Cd exposure (2 and 24 h). Based on our data, we suggest the formation of a condensed non-phosphorylating electron transport chain (ETC) functioning through cytosolic NDs and AOX, with co-regulation of ND and AOX expression during Cd stress. Therefore, both enzymes might cooperate in the potential acclimation of Arabidopsis seedlings to environmentally


Environmental and Experimental Botany | 2016

Metabolic responses of Arabidopsis thaliana roots and leaves to sublethal cadmium exposure are differentially influenced by ALTERNATIVE OXIDASE1a

Els Keunen; Igor Florez-Sarasa; Toshihiro Obata; Marijke Jozefczak; Tony Remans; Jaco Vangronsveld; Alisdair R. Fernie; Ann Cuypers

Collaboration


Dive into the Marijke Jozefczak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henk Schat

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge