Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly Opdenakker is active.

Publication


Featured researches published by Kelly Opdenakker.


Biometals | 2010

Cadmium stress: an oxidative challenge

Ann Cuypers; Michelle Plusquin; Tony Remans; Marijke Jozefczak; Els Keunen; Heidi Gielen; Kelly Opdenakker; Elke Munters; Tom Artois; Tim S. Nawrot; Jaco Vangronsveld; Kelly Smeets

At the cellular level, cadmium (Cd) induces both damaging and repair processes in which the cellular redox status plays a crucial role. Being not redox-active, Cd is unable to generate reactive oxygen species (ROS) directly, but Cd-induced oxidative stress is a common phenomenon observed in multiple studies. The current review gives an overview on Cd-induced ROS production and anti-oxidative defense in organisms under different Cd regimes. Moreover, the Cd-induced oxidative challenge is discussed with a focus on damage and signaling as downstream responses. Gathering these data, it was clear that oxidative stress related responses are affected during Cd stress, but the apparent discrepancies observed in between the different studies points towards the necessity to increase our knowledge on the spatial and temporal ROS signature under Cd stress. This information is essential in order to reveal the exact role of Cd-induced oxidative stress in the modulation of downstream responses under a diverse array of conditions.


Planta | 2008

Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations

Tony Remans; Karen Smeets; Kelly Opdenakker; Dennis Mathijsen; Jaco Vangronsveld; Ann Cuypers

Accurate quantification by real-time RT-PCR relies on normalisation of the measured gene expression data. Normalisation with multiple reference genes is becoming the standard, but the best reference genes for gene expression studies within one organism may depend on the applied treatments or the organs and tissues studied. Ideally, reference genes should be evaluated in all experimental systems. A number of candidate reference genes for Arabidopsis have been proposed, which can be used as a starting point to evaluate their expression stability in individual experimental systems by available computer algorithms like geNorm and NormFinder. Using this approach, we identified the best three reference genes from a set of ten candidates, which included three traditional “housekeeping” genes, for normalisation of gene expression when roots and leaves of Arabidopsis thaliana are exposed to cadmium (Cd) and copper (Cu). The expression stabilities of AT5G15710 (F-box protein), AT2G28390 (SAND family protein) and AT5G08290 (mitosis protein YLS8) were the highest when considering the effect to the roots and shoots of Cd and Cu treatments. Even though the effect of Cd and excess Cu on the plants is very different, the same best reference genes were identified when considering Cd or Cu treatments separately. This suggests that these three genes may also be suitable when studying the gene expression after exposure of Arabidopsis thaliana to increased concentrations of other metals.


Journal of Plant Physiology | 2011

The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings.

Ann Cuypers; Karen Smeets; Joske Ruytinx; Kelly Opdenakker; Els Keunen; Tony Remans; Nele Horemans; Nathalie Vanhoudt; Suzy Van Sanden; Frank Van Belleghem; Yves Guisez; Jan V. Colpaert; Jaco Vangronsveld

The cellular redox state is an important determinant of metal phytotoxicity. In this study we investigated the influence of cadmium (Cd) and copper (Cu) stress on the cellular redox balance in relation to oxidative signalling and damage in Arabidopsis thaliana. Both metals were easily taken up by the roots, but the translocation to the aboveground parts was restricted to Cd stress. In the roots, Cu directly induced an oxidative burst, whereas enzymatic ROS (reactive oxygen species) production via NADPH oxidases seems important in oxidative stress caused by Cd. Furthermore, in the roots, the glutathione metabolism plays a crucial role in controlling the gene regulation of the antioxidative defence mechanism under Cd stress. Metal-specific alterations were also noticed with regard to the microRNA regulation of CuZnSOD gene expression in both roots and leaves. The appearance of lipid peroxidation is dual: it can be an indication of oxidative damage as well as an indication of oxidative signalling as lipoxygenases are induced after metal exposure and are initial enzymes in oxylipin biosynthesis. In conclusion, the metal-induced cellular redox imbalance is strongly dependent on the chemical properties of the metal and the plant organ considered. The stress intensity determines its involvement in downstream responses in relation to oxidative damage or signalling.


Plant Cell and Environment | 2012

Phytoextraction of toxic metals: a central role for glutathione

C.S. Seth; Tony Remans; Els Keunen; Marijke Jozefczak; Heidi Gielen; Kelly Opdenakker; Nele Weyens; Jaco Vangronsveld; Ann Cuypers

Phytoextraction has a promising potential as an environmentally friendly clean-up method for soils contaminated with toxic metals. To improve the development of efficient phytoextraction strategies, better knowledge regarding metal uptake, translocation and detoxification in planta is a prerequisite. This review highlights our current understanding on these mechanisms, and their impact on plant growth and health. Special attention is paid to the central role of glutathione (GSH) in this process. Because of the high affinity of metals to thiols and as a precursor for phytochelatins (PCs), GSH is an essential metal chelator. Being an important antioxidant, a direct link between metal detoxification and the oxidative challenge in plants growing on contaminated soils is observed, where GSH could be a key player. In addition, as redox couple, oxidized and reduced GSH transmits specific information, in this way tuning cellular signalling pathways under environmental stress conditions. Possible improvements of phytoextraction could be achieved by using transgenic plants or plant-associated microorganisms. Joined efforts should be made to cope with the challenges faced with phytoextraction in order to successfully implement this technique in the field.


Journal of Plant Physiology | 2009

Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to Cd or Cu in a multipollution context

Karen Smeets; Kelly Opdenakker; Tony Remans; Suzy Van Sanden; Frank Van Belleghem; Brahim Semane; Nele Horemans; Yves Guisez; Jaco Vangronsveld; Ann Cuypers

The physiological effects of Cd and Cu have been highlighted in several studies over the last years. At the cellular level, oxidative stress has been reported as a common mechanism in both stress situations. Nevertheless, because of differences in their redox-related properties, the origin of the stress and regulation of these effects can be very different. Our results show a specific Cd-related induction of NADPH oxidases, whereas both metals induced lipid peroxidation via the activation of lipoxygenases. With respect to the antioxidative defense system, metal-specific patterns of superoxide dismutases (SODs) were detected, whereas gene expression levels of the H2O2-quenching enzymes were equally induced by both metals. Because monometallic exposure is very unusual in real-world situations, the metal-specific effects were compared with the mechanisms induced when the plants are exposed to both metals simultaneously. Combined exposure to Cd and Cu enhanced some of the effects that were induced when only one metal was applied to the medium. Other specific monometallically induced effects, such as a copper zinc superoxide dismutase (CSD2) downregulation due to Cd, were also sustained in a multipollution context, irrespective of the other monometallic effects. Furthermore, specific multipollution effects were unravelled, as iron superoxide dismutase 1 (FSD1) upregulation in the leaves was significant only when both Cu and Cd were applied. Additional relationships between these treatments and the common and specific stress induction mechanisms are discussed.


Functional Plant Biology | 2010

Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper.

Tony Remans; Kelly Opdenakker; Karen Smeets; Dennis Mathijsen; Jaco Vangronsveld; Ann Cuypers

Reactive oxygen species produced by NADPH oxidase and oxylipins derived from lipoxygenase activity can signal various stress conditions and have been implicated when plants are exposed to heavy metals. Transcriptional profiling of the 10 NADPH oxidase and 6 lipoxygenase genes was performed after exposure of Arabidopsis thaliana wild-type and NADPH oxidase mutants to 5 µM CdSO4 or 2 µM CuSO4 for 24 h. Under these short exposures to environmentally realistic concentrations of Cd or Cu, plants modulate signalling networks that regulate the onset of adaptive responses. Metal-specific NADPH oxidase genes were upregulated by Cd but downregulated by Cu, and metal-specific lipoxygenase gene expression was observed only after Cu exposure. Genes that are responsive to both metals were upregulated and may be responsive to general oxidative stress. For all metal-responsive genes except RBOHD, distinct responses were observed between leaves and roots, which may be due to different stress intensities and signalling mechanisms. Mutation of NADPH oxidase genes had opposing effects on gene expression after Cd or Cu exposure. Upregulation of LOX1 and LOX6 in the roots after exposure to Cd depended on NADPH oxidase gene expression, whereas LOX3 and LOX6 expression was induced more strongly in NADPH oxidase mutants after Cu exposure. Furthermore, NADPH oxidases regulated their own expression level and that of other members of the gene family when exposed to Cd or Cu. The results suggest interplay between reactive oxygen species and oxylipin signalling under Cd or Cu stress, and are useful as a basis for genetic studies to unravel metal-specific signalling mechanisms.


International Journal of Molecular Sciences | 2012

Mitogen-Activated Protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses.

Kelly Opdenakker; Tony Remans; Jaco Vangronsveld; Ann Cuypers

Exposure of plants to toxic concentrations of metals leads to disruption of the cellular redox status followed by an accumulation of reactive oxygen species (ROS). ROS, like hydrogen peroxide, can act as signaling molecules in the cell and induce signaling via mitogen-activated protein kinase (MAPK) cascades. MAPK cascades are evolutionary conserved signal transduction modules, able to convert extracellular signals to appropriate cellular responses. In this review, our current understanding about MAPK signaling in plant metal stress is discussed. However, this knowledge is scarce compared to research into the role of MAPK signaling in the case of other abiotic and biotic stresses. ROS production is a common response induced by different stresses and undiscovered analogies may exist with metal stress. Therefore, further attention is given to MAPK signaling in other biotic and abiotic stresses and its interplay with other signaling pathways to create a framework in which the involvement of MAPK signaling in metal stress may be studied.


Archive | 2012

Cadmium and Copper Stress Induce a Cellular Oxidative Challenge Leading to Damage Versus Signalling

Ann Cuypers; Els Keunen; Sacha Bohler; Marijke Jozefczak; Kelly Opdenakker; Heidi Gielen; Hanne Vercampt; An Bielen; Kerim Schellingen; Jaco Vangronsveld; Tony Remans

Contamination of soils with the potentially toxic elements cadmium (Cd) and copper (Cu) affects plant growth and crop production, and bioaccumulation in the food chain poses a threat to human health. Toxic levels of Cd or Cu both impose an oxidative challenge on plants, even though these trace elements have a different chemical (non-redox active versus redox-active) and biological (non-essential versus essential element) behaviour. Through (in)direct mechanisms, Cd and Cu cause an increased production of reactive oxygen species (ROS) as well as interference with redox-regulated compounds in different cellular compartments. This chapter highlights general and/or specific mechanisms of interference with the cellular redox homeostasis by Cd and Cu, which may be part of the sensing mechanism to these stresses. Furthermore, it emphasises the metal-induced oxidative challenge and its involvement in either cellular damage and/or downstream signalling responses.


Plant Physiology and Biochemistry | 2013

A mutant of the Arabidopsis thaliana LIPOXYGENASE1 gene shows altered signalling and oxidative stress related responses after cadmium exposure.

Els Keunen; Tony Remans; Kelly Opdenakker; Marijke Jozefczak; Heidi Gielen; Yves Guisez; Jaco Vangronsveld; Ann Cuypers

Lipoxygenases (LOXes, EC 1.13.11.12) are involved in growth, development and responses to stress. Earlier results suggested a role in stress generation, signalling and/or responses when Arabidopsis thaliana is exposed to cadmium (Cd), and expression of the cytosolic LOX1 was highly upregulated in the roots after Cd exposure. To investigate the involvement of LOX1 in early metal stress responses, three-week-old wild-type and lox1-1 mutant A. thaliana plants were acutely (24 h) exposed to realistic Cd concentrations (5 and 10 μM) and several oxidative stress and signalling related parameters were studied at transcriptional and biochemical levels. Transcription of several genes encoding ROS producing and scavenging enzymes failed to be induced up to wild-type levels after Cd exposure. Expression of 9-LOX enzymes was inhibited in lox1-1 mutant roots due to lack of functional LOX1 and downregulated LOX5 expression, and the lox1-1 mutation also interfered with the expression of genes involved in jasmonate biosynthesis. LOX1 and RBOHD may be involved in stress signalling from roots to shoots, as the induction of APX2 expression, which is dependent on RBOHD activity, was disrupted in lox1-1 while RBOHD failed to be upregulated. A different pattern of H(2)O(2) production and ascorbate and glutathione levels in lox1-1 mutants after Cd exposure may have indirectly influenced gene expression patterns. Although indirect effects of the lox1-1 mutation on gene expression complicate the determination of exact sensing - signalling - response pathways, the results presented here outline a more refined LOX1 functioning in Cd-induced stress responses that could be used in studies determining the exact involvement of LOX1 in these pathways.


Plant Cell and Environment | 2013

The role of the kinase OXI1 in cadmium‐ and copper‐induced molecular responses in Arabidopsis thaliana

Karen Smeets; Kelly Opdenakker; Tony Remans; Celine Forzani; Heribert Hirt; Jaco Vangronsveld; Ann Cuypers

The hypothesis that mitogen-activated protein kinase (MAPK) signalling is important in plant defences against metal stress has become accepted in recent years. To test the role of oxidative signal-inducible kinase (OXI1) in metal-induced oxidative signalling, the responses of oxi1 knockout lines to environmentally realistic cadmium (Cd) and copper (Cu) concentrations were compared with those of wild-type plants. A relationship between OXI1 and the activation of lipoxygenases and other initiators of oxylipin production was observed under these stress conditions, suggesting that lipoxygenase-1 may be a downstream component of OXI1 signalling. Metal-specific differences in OXI1 action were observed. For example, OXI1 was required for the up-regulation of antioxidative defences such as catalase in leaves and Fe-superoxide dismutase in roots, following exposure to Cu, processes that may involve the MEKK1-MKK2-WRKY25 cascade. Moreover, the induction of Cu/Zn superoxide dismutases in Cu-exposed leaves was regulated by OXI1 in a manner that involves fluctuations in the expression of miRNA398. These observations contrast markedly with the responses to Cd exposure, which also involves OXI1-independent pathways but rather involves changes in components mediating intracellular communication.

Collaboration


Dive into the Kelly Opdenakker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge