Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tony Remans is active.

Publication


Featured researches published by Tony Remans.


Biometals | 2010

Cadmium stress: an oxidative challenge

Ann Cuypers; Michelle Plusquin; Tony Remans; Marijke Jozefczak; Els Keunen; Heidi Gielen; Kelly Opdenakker; Elke Munters; Tom Artois; Tim S. Nawrot; Jaco Vangronsveld; Kelly Smeets

At the cellular level, cadmium (Cd) induces both damaging and repair processes in which the cellular redox status plays a crucial role. Being not redox-active, Cd is unable to generate reactive oxygen species (ROS) directly, but Cd-induced oxidative stress is a common phenomenon observed in multiple studies. The current review gives an overview on Cd-induced ROS production and anti-oxidative defense in organisms under different Cd regimes. Moreover, the Cd-induced oxidative challenge is discussed with a focus on damage and signaling as downstream responses. Gathering these data, it was clear that oxidative stress related responses are affected during Cd stress, but the apparent discrepancies observed in between the different studies points towards the necessity to increase our knowledge on the spatial and temporal ROS signature under Cd stress. This information is essential in order to reveal the exact role of Cd-induced oxidative stress in the modulation of downstream responses under a diverse array of conditions.


Planta | 2008

Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations

Tony Remans; Karen Smeets; Kelly Opdenakker; Dennis Mathijsen; Jaco Vangronsveld; Ann Cuypers

Accurate quantification by real-time RT-PCR relies on normalisation of the measured gene expression data. Normalisation with multiple reference genes is becoming the standard, but the best reference genes for gene expression studies within one organism may depend on the applied treatments or the organs and tissues studied. Ideally, reference genes should be evaluated in all experimental systems. A number of candidate reference genes for Arabidopsis have been proposed, which can be used as a starting point to evaluate their expression stability in individual experimental systems by available computer algorithms like geNorm and NormFinder. Using this approach, we identified the best three reference genes from a set of ten candidates, which included three traditional “housekeeping” genes, for normalisation of gene expression when roots and leaves of Arabidopsis thaliana are exposed to cadmium (Cd) and copper (Cu). The expression stabilities of AT5G15710 (F-box protein), AT2G28390 (SAND family protein) and AT5G08290 (mitosis protein YLS8) were the highest when considering the effect to the roots and shoots of Cd and Cu treatments. Even though the effect of Cd and excess Cu on the plants is very different, the same best reference genes were identified when considering Cd or Cu treatments separately. This suggests that these three genes may also be suitable when studying the gene expression after exposure of Arabidopsis thaliana to increased concentrations of other metals.


International Journal of Molecular Sciences | 2012

Glutathione Is a Key Player in Metal-Induced Oxidative Stress Defenses

Marijke Jozefczak; Tony Remans; Jaco Vangronsveld; Ann Cuypers

Since the industrial revolution, the production, and consequently the emission of metals, has increased exponentially, overwhelming the natural cycles of metals in many ecosystems. Metals display a diverse array of physico-chemical properties such as essential versus non-essential and redox-active versus non-redox-active. In general, all metals can lead to toxicity and oxidative stress when taken up in excessive amounts, imposing a serious threat to the environment and human health. In order to cope with different kinds of metals, plants possess defense strategies in which glutathione (GSH; γ-glu-cys-gly) plays a central role as chelating agent, antioxidant and signaling component. Therefore, this review highlights the role of GSH in: (1) metal homeostasis; (2) antioxidative defense; and (3) signal transduction under metal stress. The diverse functions of GSH originate from the sulfhydryl group in cysteine, enabling GSH to chelate metals and participate in redox cycling.


Journal of Plant Physiology | 2011

The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings.

Ann Cuypers; Karen Smeets; Joske Ruytinx; Kelly Opdenakker; Els Keunen; Tony Remans; Nele Horemans; Nathalie Vanhoudt; Suzy Van Sanden; Frank Van Belleghem; Yves Guisez; Jan V. Colpaert; Jaco Vangronsveld

The cellular redox state is an important determinant of metal phytotoxicity. In this study we investigated the influence of cadmium (Cd) and copper (Cu) stress on the cellular redox balance in relation to oxidative signalling and damage in Arabidopsis thaliana. Both metals were easily taken up by the roots, but the translocation to the aboveground parts was restricted to Cd stress. In the roots, Cu directly induced an oxidative burst, whereas enzymatic ROS (reactive oxygen species) production via NADPH oxidases seems important in oxidative stress caused by Cd. Furthermore, in the roots, the glutathione metabolism plays a crucial role in controlling the gene regulation of the antioxidative defence mechanism under Cd stress. Metal-specific alterations were also noticed with regard to the microRNA regulation of CuZnSOD gene expression in both roots and leaves. The appearance of lipid peroxidation is dual: it can be an indication of oxidative damage as well as an indication of oxidative signalling as lipoxygenases are induced after metal exposure and are initial enzymes in oxylipin biosynthesis. In conclusion, the metal-induced cellular redox imbalance is strongly dependent on the chemical properties of the metal and the plant organ considered. The stress intensity determines its involvement in downstream responses in relation to oxidative damage or signalling.


Plant Cell and Environment | 2012

Phytoextraction of toxic metals: a central role for glutathione

C.S. Seth; Tony Remans; Els Keunen; Marijke Jozefczak; Heidi Gielen; Kelly Opdenakker; Nele Weyens; Jaco Vangronsveld; Ann Cuypers

Phytoextraction has a promising potential as an environmentally friendly clean-up method for soils contaminated with toxic metals. To improve the development of efficient phytoextraction strategies, better knowledge regarding metal uptake, translocation and detoxification in planta is a prerequisite. This review highlights our current understanding on these mechanisms, and their impact on plant growth and health. Special attention is paid to the central role of glutathione (GSH) in this process. Because of the high affinity of metals to thiols and as a precursor for phytochelatins (PCs), GSH is an essential metal chelator. Being an important antioxidant, a direct link between metal detoxification and the oxidative challenge in plants growing on contaminated soils is observed, where GSH could be a key player. In addition, as redox couple, oxidized and reduced GSH transmits specific information, in this way tuning cellular signalling pathways under environmental stress conditions. Possible improvements of phytoextraction could be achieved by using transgenic plants or plant-associated microorganisms. Joined efforts should be made to cope with the challenges faced with phytoextraction in order to successfully implement this technique in the field.


Nature Methods | 2013

The need for transparency and good practices in the qPCR literature

Stephen A. Bustin; Vladimir Benes; Jeremy A. Garson; Jan Hellemans; Jim F. Huggett; Mikael Kubista; Reinhold Mueller; Tania Nolan; Michael W. Pfaffl; Gregory L. Shipley; Carl T. Wittwer; Peter Schjerling; Philip J. R. Day; Mónica Abreu; Begoña Aguado; Jean-François Beaulieu; Anneleen Beckers; Sara Bogaert; John A. Browne; Fernando Carrasco-Ramiro; Liesbeth Ceelen; Kate L. Ciborowski; Pieter Cornillie; Stephanie Coulon; Ann Cuypers; Sara De Brouwer; Leentje De Ceuninck; Jurgen De Craene; Hélène De Naeyer; Ward De Spiegelaere

Two surveys of over 1,700 publications whose authors use quantitative real-time PCR (qPCR) reveal a lack of transparent and comprehensive reporting of essential technical information. Reporting standards are significantly improved in publications that cite the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, although such publications are still vastly outnumbered by those that do not.


Journal of Plant Physiology | 2009

Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to Cd or Cu in a multipollution context

Karen Smeets; Kelly Opdenakker; Tony Remans; Suzy Van Sanden; Frank Van Belleghem; Brahim Semane; Nele Horemans; Yves Guisez; Jaco Vangronsveld; Ann Cuypers

The physiological effects of Cd and Cu have been highlighted in several studies over the last years. At the cellular level, oxidative stress has been reported as a common mechanism in both stress situations. Nevertheless, because of differences in their redox-related properties, the origin of the stress and regulation of these effects can be very different. Our results show a specific Cd-related induction of NADPH oxidases, whereas both metals induced lipid peroxidation via the activation of lipoxygenases. With respect to the antioxidative defense system, metal-specific patterns of superoxide dismutases (SODs) were detected, whereas gene expression levels of the H2O2-quenching enzymes were equally induced by both metals. Because monometallic exposure is very unusual in real-world situations, the metal-specific effects were compared with the mechanisms induced when the plants are exposed to both metals simultaneously. Combined exposure to Cd and Cu enhanced some of the effects that were induced when only one metal was applied to the medium. Other specific monometallically induced effects, such as a copper zinc superoxide dismutase (CSD2) downregulation due to Cd, were also sustained in a multipollution context, irrespective of the other monometallic effects. Furthermore, specific multipollution effects were unravelled, as iron superoxide dismutase 1 (FSD1) upregulation in the leaves was significant only when both Cu and Cd were applied. Additional relationships between these treatments and the common and specific stress induction mechanisms are discussed.


International Journal of Molecular Sciences | 2011

Metal-Induced Oxidative Stress and Plant Mitochondria

Els Keunen; Tony Remans; Sacha Bohler; Jaco Vangronsveld; Ann Cuypers

A general status of oxidative stress in plants caused by exposure to elevated metal concentrations in the environment coincides with a constraint on mitochondrial electron transport, which enhances ROS accumulation at the mitochondrial level. As mitochondria are suggested to be involved in redox signaling under environmental stress conditions, mitochondrial ROS can initiate a signaling cascade mediating the overall stress response, i.e., damage versus adaptation. This review highlights our current understanding of metal-induced responses in plants, with focus on the production and detoxification of mitochondrial ROS. In addition, the potential involvement of retrograde signaling in these processes will be discussed.


Functional Plant Biology | 2010

Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper.

Tony Remans; Kelly Opdenakker; Karen Smeets; Dennis Mathijsen; Jaco Vangronsveld; Ann Cuypers

Reactive oxygen species produced by NADPH oxidase and oxylipins derived from lipoxygenase activity can signal various stress conditions and have been implicated when plants are exposed to heavy metals. Transcriptional profiling of the 10 NADPH oxidase and 6 lipoxygenase genes was performed after exposure of Arabidopsis thaliana wild-type and NADPH oxidase mutants to 5 µM CdSO4 or 2 µM CuSO4 for 24 h. Under these short exposures to environmentally realistic concentrations of Cd or Cu, plants modulate signalling networks that regulate the onset of adaptive responses. Metal-specific NADPH oxidase genes were upregulated by Cd but downregulated by Cu, and metal-specific lipoxygenase gene expression was observed only after Cu exposure. Genes that are responsive to both metals were upregulated and may be responsive to general oxidative stress. For all metal-responsive genes except RBOHD, distinct responses were observed between leaves and roots, which may be due to different stress intensities and signalling mechanisms. Mutation of NADPH oxidase genes had opposing effects on gene expression after Cd or Cu exposure. Upregulation of LOX1 and LOX6 in the roots after exposure to Cd depended on NADPH oxidase gene expression, whereas LOX3 and LOX6 expression was induced more strongly in NADPH oxidase mutants after Cu exposure. Furthermore, NADPH oxidases regulated their own expression level and that of other members of the gene family when exposed to Cd or Cu. The results suggest interplay between reactive oxygen species and oxylipin signalling under Cd or Cu stress, and are useful as a basis for genetic studies to unravel metal-specific signalling mechanisms.


Plant Physiology and Biochemistry | 2014

Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity.

Marijke Jozefczak; Els Keunen; Henk Schat; Mattijs Bliek; Luis E. Hernández; Robert Carleer; Tony Remans; Sacha Bohler; Jaco Vangronsveld; Ann Cuypers

This study aims to uncover the spatiotemporal involvement of glutathione (GSH) in two major mechanisms of cadmium (Cd)-induced detoxification (i.e. chelation and antioxidative defence). A kinetic study was conducted on hydroponically grown Arabidopsis thaliana (L. Heyhn) to gain insight into the early events after exposure to Cd. Cadmium detoxification was investigated at different levels, including gene transcripts, enzyme activities and metabolite content. Data indicate a time-dependent response both within roots and between plant organs. Early on in roots, GSH was preferentially allocated to phytochelatin (PC) synthesis destined for Cd chelation. This led to decreased GSH levels, without alternative pathways activated to complement GSHs antioxidative functions. After one day however, multiple antioxidative pathways increased including superoxide dismutase (SOD), ascorbate (AsA) and catalase (CAT) to ensure efficient neutralization of Cd-induced reactive oxygen species (ROS). As a consequence of Cd retention and detoxification in roots, a delayed response occurred in leaves. Together with high leaf thiol contents and possibly signalling responses from the roots, the leaves were protected, allowing them sufficient time to activate their defence mechanisms.

Collaboration


Dive into the Tony Remans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge