Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefania Angioletti is active.

Publication


Featured researches published by Stefania Angioletti.


Journal of The American Society of Nephrology | 2004

Mesenchymal Stem Cells Are Renotropic, Helping to Repair the Kidney and Improve Function in Acute Renal Failure

Marina Morigi; Barbara Imberti; Carla Zoja; Daniela Corna; Susanna Tomasoni; Mauro Abbate; Daniela Rottoli; Stefania Angioletti; Ariela Benigni; Norberto Perico; Malcolm R. Alison; Giuseppe Remuzzi

Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. The model of renal injury induced in mice by the anticancer agent cisplatin was chosen. Injection of mesenchymal stem cells of male bone marrow origin remarkably protected cisplatin-treated syngeneic female mice from renal function impairment and severe tubular injury. Y chromosome-containing cells localized in the context of the tubular epithelial lining and displayed binding sites for Lens culinaris lectin, indicating that mesenchymal stem cells engraft the damaged kidney and differentiate into tubular epithelial cells, thereby restoring renal structure and function. Mesenchymal stem cells markedly accelerated tubular proliferation in response to cisplatin-induced damage, as revealed by higher numbers of Ki-67-positive cells within the tubuli with respect to cisplatin-treated mice that were given saline. Hematopoietic stem cells failed to exert beneficial effects. These results offer a strong case for exploring the possibility that mesenchymal stem cells by virtue of their renotropic property and tubular regenerative potential may have a role in the treatment of acute renal failure in humans.


Journal of Clinical Investigation | 1998

Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion.

Marina Morigi; Stefania Angioletti; Barbara Imberti; Roberta Donadelli; Gianluca Micheletti; Marina Figliuzzi; Andrea Remuzzi; Carla Zoja; Giuseppe Remuzzi

We addressed the role of hyperglycemia in leukocyte-endothelium interaction under flow conditions by exposing human umbilical vein endothelial cells for 24 h to normal (5 mM), high concentration of glucose (30 mM), advanced glycosylation end product-albumin (100 microg/ml), or hyperglycemic (174-316 mg/dl) sera from patients with diabetes and abnormal hemoglobin A1c (8.1+/-1.4%). At the end of incubation endothelial cells were perfused with total leukocyte suspension in a parallel plate flow chamber under laminar flow (1.5 dyn/cm2). Rolling and adherent cells were evaluated by digital image processing. Results showed that 30 mM glucose significantly (P < 0. 01) increased the number of adherent leukocytes to endothelial cells in respect to control (5 mM glucose; 151+/-19 versus 33+/-8 cells/mm2). A similar response was induced by endothelial stimulation with IL-1beta, here used as positive control (195+/-20 cells/mm2). The number of rolling cells on endothelial surface was not affected by high glucose level. Stable adhesion of leukocytes to glucose-treated as well as to IL-1beta-stimulated endothelial cells was preceded by short interaction of leukocytes with the endothelial surface. The distance travelled by leukocytes before arrest on 30 mM glucose, or on IL-1beta-treated endothelial cells, was significantly (P < 0.01) higher than that observed for leukocytes adhering on control endothelium (30 mM glucose: 76.7+/-3.5; IL1beta: 69.7+/-4 versus 5 mM glucose: 21.5+/-5 microm). Functional blocking of E-selectin, intercellular cell adhesion molecule-1, and vascular cell adhesion molecule-1 on endothelial cells with the corresponding mouse mAb significantly inhibited glucose-induced increase in leukocyte adhesion (67+/-16, 83+/-12, 62+/-8 versus 144+/-21 cells/ mm2). Confocal fluorescence microscopy studies showed that 30 mM glucose induced an increase in endothelial surface expression of E-selectin, intercellular cell adhesion molecule-1, and vascular cell adhesion molecule-1. Electrophoretic mobility shift assay of nuclear extracts of human umbilical vein endothelial cells (HUVEC) exposed for 1 h to 30 mM glucose revealed an intense NF-kB activation. Treatment of HUVEC exposed to high glucose with the NF-kB inhibitors pyrrolidinedithiocarbamate (100 microM) and tosyl-phe-chloromethylketone (25 microM) significantly reduced (P < 0.05) leukocyte adhesion in respect to HUVEC treated with glucose alone. A significant (P < 0.01) inhibitory effect on glucose-induced leukocyte adhesion was observed after blocking protein kinase C activity with staurosporine (5 nM). When HUVEC were treated with specific antisense oligodesoxynucleotides against PKCalpha and PKCepsilon isoforms before the addition of 30 mM glucose, a significant (P < 0.05) reduction in the adhesion was also seen. Advanced glycosylation end product-albumin significantly increased the number of adhering leukocytes in respect to native albumin used as control (110+/-16 versus 66+/-7, P < 0.01). Sera from diabetic patients significantly (P < 0.01) enhanced leukocyte adhesion as compared with controls, despite normal levels of IL-1beta and TNFalpha in these sera. These data indicate that high glucose concentration and hyperglycemia promote leukocyte adhesion to the endothelium through upregulation of cell surface expression of adhesive proteins, possibly depending on NF-kB activation.


American Journal of Pathology | 2002

Transforming Growth Factor-β1 Is Up-Regulated by Podocytes in Response to Excess Intraglomerular Passage of Proteins : A Central Pathway in Progressive Glomerulosclerosis

Mauro Abbate; Carla Zoja; Marina Morigi; Daniela Rottoli; Stefania Angioletti; Susanna Tomasoni; Cristina Zanchi; Lorena Longaretti; Roberta Donadelli; Giuseppe Remuzzi

Chronic diseases of the kidney have a progressive course toward organ failure. Common pathway mechanisms of progressive injury, irrespectively of the etiology of the underlying diseases, include glomerular capillary hypertension and enhanced passage of plasma proteins across the glomerular capillary barrier because of impaired permselective function. These changes are associated with podocyte injury and glomerular sclerosis. Direct evidence for causal roles is lacking, particularly for the link between intraglomerular protein deposition and sclerosing reaction. Because transforming growth factor-beta1 (TGF-beta1) is the putative central mediator of scarring, we hypothesized that TGF-beta1 can be up-regulated by protein overload of podocytes thereby contributing to sclerosis. In rats with renal mass reduction, protein accumulation in podocytes as a consequence of enhanced transcapillary passage preceded podocyte dedifferentiation and injury, increase in TGF-beta1 expression in podocytes, and TGF-beta1-dependent activation of mesangial cells. Angiotensin-converting enzyme inhibitor prevented both accumulation of plasma proteins and TGF-beta1 overexpression in podocytes and sclerosis. Albumin load on podocytes in vitro caused loss of the synaptopodin differentiation marker and enhanced TGF-beta1 mRNA and protein. Conditioned medium of albumin-stimulated podocytes induced a sclerosing phenotype in mesangial cells, an effect mimicked by TGF-beta1 and blocked by anti-TGF-beta1 antibodies. Thus, the passage of excess plasma proteins across the glomerular capillary wall is the trigger of podocyte dysfunction and of a TGF-beta1-mediated mechanism underlying sclerosis. Agents to reduce TGF-beta1, possibly combined with angiotensin blockade, should have priority in novel approaches to treatment of progressive nephropathies.


American Journal of Pathology | 2005

In response to protein load podocytes reorganize cytoskeleton and modulate endothelin-1 gene: Implication for permselective dysfunction of chronic nephropathies

Marina Morigi; Simona Buelli; Stefania Angioletti; Cristina Zanchi; Lorena Longaretti; Carla Zoja; Miriam Galbusera; Sara Gastoldi; Peter Mundel; Giuseppe Remuzzi; Ariela Benigni

Effacement of podocyte foot processes occurs in many proteinuric nephropathies and is accompanied by rearrangement of the actin cytoskeleton. Here, we studied whether protein overload affects intracellular pathways, leading to cytoskeletal architecture changes and ultimately to podocyte dysfunction. Mouse podocytes bound and endocytosed both albumin and IgG via receptor-specific mechanisms. Protein overload caused redistribution of F-actin fibers instrumental to up-regulation of the prepro-endothelin (ET)-1 gene and production of the corresponding peptide. Increased DNA-binding activity for nuclear factor (NF)-kappaB and Ap-1 nuclear proteins was measured in nuclear extracts of podocytes exposed to excess proteins. Both Y27632, which inhibits Rho kinase-dependent stress fiber formation, and jasplakinolide, an F-actin stabilizer, decreased NF-kappaB and Ap-1 activity and reduced ET-1 expression. This suggested a role for the cytoskeleton, through activated Rho, in the regulation of the ET-1 peptide. Focal adhesion kinase (FAK), an integrin-associated nonreceptor tyrosine kinase, was phosphorylated by albumin treatment via Rho kinase-triggered actin reorganization. FAK activation led to NF-kappaB- and Ap-1-dependent ET-1 expression. These data suggest that reorganization of the actin cytoskeletal network in response to protein load is implicated in modulation of the ET-1 gene via Rho kinase-dependent FAK activation of NF-kappaB and Ap-1 in differentiated podocytes. Increased ET-1 generation might alter glomerular permselectivity and amplify the noxious effect of protein overload on dysfunctional podocytes.


Jacc-Heart Failure | 2016

Pathogenic Gut Flora in Patients With Chronic Heart Failure

Evasio Pasini; Roberto Aquilani; Cristian Testa; Paola Baiardi; Stefania Angioletti; Federica Boschi; Manuela Verri; Francesco Saverio Dioguardi

OBJECTIVES The goal of this study was to measure the presence of pathogenic gut flora and intestinal permeability (IP) and their correlations with disease severity, venous blood congestion, and inflammation in patients with chronic heart failure (CHF). BACKGROUND Evidence suggests that translocation of gut flora and/or their toxins from the intestine to the bloodstream is a possible trigger of systemic CHF inflammation. However, the relation between pathogenic gut flora and CHF severity, as well as IP, venous blood congestion as right atrial pressure (RAP), and/or systemic inflammation (C-reactive protein [CRP]), is still unknown. METHODS This study analyzed 60 well-nourished patients in stable condition with mild CHF (New York Heart Association [NYHA] functional class I to II; n = 30) and moderate to severe CHF (NYHA functional class III to IV; n = 30) and matched healthy control subjects (n = 20). In all subjects, the presence and development in the feces of bacteria and fungi (Candida species) were measured; IP according to cellobiose sugar test results was documented. The study data were then correlated with RAP (echocardiography) and systemic inflammation. RESULTS Compared with normal control subjects, the entire CHF population had massive quantities of pathogenic bacteria and Candida such as Campylobacter (85.3 ± 3.7 CFU/ml vs. 1.0 ± 0.3 CFU/ml; p < 0.001), Shigella (38.9 ± 12.3 CFU/ml vs. 1.6 ± 0.2 CFU/ml; p < 0.001), Salmonella (31.3 ± 9.1 CFU/ml vs 0 CFU/ml; p < 0.001), Yersinia enterocolitica (22.9 ± 6.3 CFU/ml vs. 0 CFU/ml; p < 0.0001), and Candida species (21.3 ± 1.6 CFU/ml vs. 0.8 ± 0.4 CFU/ml; p < 0.001); altered IP (10.2 ± 1.2 mg vs. 1.5 ± 0.8 mg; p < 0.001); and increased RAP (12.6 ± 0.6 mm Hg) and inflammation (12.5 ± 0.6 mg/dl). These variables were more pronounced in patients with moderate to severe NYHA functional classes than in patients with the mild NYHA functional class. Notably, IP, RAP, and CRP were mutually interrelated (IP vs. RAP, r = 0.55; p < 0.0001; IP vs. CRP, r = 0.78; p < 0.0001; and RAP vs. CRP, r = 0.78; p < 0.0001). CONCLUSIONS This study showed that patients with CHF may have intestinal overgrowth of pathogenic bacteria and Candida species and increased IP associated with clinical disease severity, venous blood congestion, and inflammation.


Xenotransplantation | 1998

Xenogeneic human serum promotes leukocyte adhesion to porcine endothelium under flow conditions, possibly through the activation of the transcription factor NF-κB

Marina Morigi; Carla Zoja; Stella Colleoni; Stefania Angioletti; Barbara Imberti; Andrea Remuzzi; Giuseppe Remuzzi

Abstract: Endothelial cell activation and leukocyte infiltration are a consistent feature of discordant xenograft rejection. Here we evaluated whether xenogeneic serum, as a source of xenoreactive natural antibodies and complement, induced endothelial cell activation with consequent leukocyte adhesion under flow conditions. Porcine aortic endothelial cells (PAEC) were incubated for 1 hr 30 min or 5 hr with 10% homologous porcine serum (control) or 10% xenogeneic human serum and then perfused with total human leukocytes in a parallel plate flow chamber under laminar flow (1.5 dynes/cm2). Adherent cells were counted by digital image analysis. Xenogeneic human serum significantly (P<0.01) increased the number of adherent leukocytes as compared with porcine serum. A similar adhesive response was elicited by TNFα (100 U/ml), one of the most potent inducers of endothelial cell adhesive properties, here used as positive control.


Xenotransplantation | 2005

Activation of porcine endothelium in response to xenogeneic serum causes thrombosis independently of platelet activation.

Miriam Galbusera; Simona Buelli; Sara Gastoldi; Daniela Macconi; Stefania Angioletti; Cristian Testa; Giuseppe Remuzzi; Marina Morigi

Abstract:  Background:  Endothelial cell activation and microvascular thrombosis are hallmarks of hyperacute xenograft rejection. However, the molecular determinants of platelet‐endothelial interaction and thrombus formation are poorly understood. This study investigated whether: (i) xenogeneic human serum (HS), as a source of xenoreactive antibodies and complement, activates porcine aortic endothelial cells (PAEC) to promote thrombus formation under high shear stress; (ii) the endothelial adhesive proteins vitronectin receptor and P‐selectin are involved in the von Willebrand factor (VWF)‐platelet interaction during the thrombotic process under flow; (iii) reactive oxygen species (ROS) are activated by complement and served as intracellular signals for adhesive protein up‐regulation.


Kidney International | 2002

Shiga toxin-2 triggers endothelial leukocyte adhesion and transmigration via NF-kappaB dependent up-regulation of IL-8 and MCP-1.

Carla Zoja; Stefania Angioletti; Roberta Donadelli; Cristina Zanchi; Susanna Tomasoni; Elena Binda; Barbara Imberti; Maroeska Te Loo; Leo Monnens; Giuseppe Remuzzi; Marina Morigi


American Journal of Pathology | 2006

Permselective dysfunction of podocyte-podocyte contact upon angiotensin II unravels the molecular target for renoprotective intervention.

Daniela Macconi; Mauro Abbate; Marina Morigi; Stefania Angioletti; Marilena Mister; Simona Buelli; Maria Bonomelli; Peter Mundel; Karlhans Endlich; Andrea Remuzzi; Giuseppe Remuzzi


Microvascular Research | 2000

Shear stress-induced cytoskeleton rearrangement mediates NF-κB-dependent endothelial expression of ICAM-1

Barbara Imberti; Marina Morigi; Carla Zoja; Stefania Angioletti; Mauro Abbate; Andrea Remuzzi; Giuseppe Remuzzi

Collaboration


Dive into the Stefania Angioletti's collaboration.

Top Co-Authors

Avatar

Giuseppe Remuzzi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Marina Morigi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Carla Zoja

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Barbara Imberti

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberta Donadelli

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Cristina Zanchi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simona Buelli

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Susanna Tomasoni

Mario Negri Institute for Pharmacological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge