Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario Brosch is active.

Publication


Featured researches published by Mario Brosch.


Nature Genetics | 2007

A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease

Stephan Buch; Clemens Schafmayer; Henry Völzke; Christian Becker; Andre Franke; von Eller-Eberstein H; Christian Kluck; Bässmann I; Mario Brosch; Frank Lammert; Juan Francisco Miquel; Nervi F; Michael Wittig; Dieter Rosskopf; Timm B; Höll C; Marcus Seeger; Abdou ElSharawy; Tim Lu; Jan-Hendrik Egberts; Fred Fändrich; Ulrich R. Fölsch; Michael Krawczak; Stefan Schreiber; Peter Nürnberg; Jürgen Tepel; Jochen Hampe

With an overall prevalence of 10–20%, gallstone disease (cholelithiasis) represents one of the most frequent and economically relevant health problems of industrialized countries. We performed an association scan of >500,000 SNPs in 280 individuals with gallstones and 360 controls. A follow-up study of the 235 most significant SNPs in 1,105 affected individuals and 873 controls replicated the disease association of SNP A-1791411 in ABCG8 (allelic P value PCCA = 4.1 × 10−9), which was subsequently attributed to coding variant rs11887534 (D19H). Additional replication was achieved in 728 German (P = 2.8 × 10−7) and 167 Chilean subjects (P = 0.02). The overall odds ratio for D19H carriership was 2.2 (95% confidence interval: 1.8–2.6, P = 1.4 × 10−14) in the full German sample. Association was stronger in subjects with cholesterol gallstones (odds ratio = 3.3), suggesting that His19 might be associated with a more efficient transport of cholesterol into the bile.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Obesity accelerates epigenetic aging of human liver

Steve Horvath; Wiebke Erhart; Mario Brosch; Ole Ammerpohl; Witigo von Schönfels; Markus Ahrens; Nils Heits; Jordana T. Bell; Pei-Chien Tsai; Tim D. Spector; Panos Deloukas; Reiner Siebert; Bence Sipos; Thomas Becker; Christoph Röcken; Clemens Schafmayer; Jochen Hampe

Significance Because obese people are at an increased risk of many age-related diseases, it is a plausible hypothesis that obesity increases the biological age of some tissues and cell types. However, it has been difficult to detect such an accelerated aging effect because it is unclear how to measure tissue age. Here we use a recently developed biomarker of aging (known as “epigenetic clock”) to study the relationship between epigenetic age and obesity in several human tissues. We report an unexpectedly strong correlation between high body mass index and the epigenetic age of liver tissue. This finding may explain why obese people suffer from the early onset of many age-related pathologies, including liver cancer. Because of the dearth of biomarkers of aging, it has been difficult to test the hypothesis that obesity increases tissue age. Here we use a novel epigenetic biomarker of aging (referred to as an “epigenetic clock”) to study the relationship between high body mass index (BMI) and the DNA methylation ages of human blood, liver, muscle, and adipose tissue. A significant correlation between BMI and epigenetic age acceleration could only be observed for liver (r = 0.42, P = 6.8 × 10−4 in dataset 1 and r = 0.42, P = 1.2 × 10−4 in dataset 2). On average, epigenetic age increased by 3.3 y for each 10 BMI units. The detected age acceleration in liver is not associated with the Nonalcoholic Fatty Liver Disease Activity Score or any of its component traits after adjustment for BMI. The 279 genes that are underexpressed in older liver samples are highly enriched (1.2 × 10−9) with nuclear mitochondrial genes that play a role in oxidative phosphorylation and electron transport. The epigenetic age acceleration, which is not reversible in the short term after rapid weight loss induced by bariatric surgery, may play a role in liver-related comorbidities of obesity, such as insulin resistance and liver cancer.


Cell Metabolism | 2013

DNA Methylation Analysis in Nonalcoholic Fatty Liver Disease Suggests Distinct Disease-Specific and Remodeling Signatures after Bariatric Surgery

Markus Ahrens; Ole Ammerpohl; Witigo von Schönfels; Julia Kolarova; Susanne Bens; T Itzel; Andreas Teufel; Alexander M. Herrmann; Mario Brosch; Holger Hinrichsen; Wiebke Erhart; Jan Hendrik Egberts; Bence Sipos; Stefan Schreiber; Robert Häsler; Felix Stickel; Thomas Becker; Michael Krawczak; Christoph Röcken; Reiner Siebert; Clemens Schafmayer; Jochen Hampe

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries. Liver samples from morbidly obese patients (n = 45) with all stages of NAFLD and controls (n = 18) were analyzed by array-based DNA methylation and mRNA expression profiling. NAFLD-specific expression and methylation differences were seen for nine genes coding for key enzymes in intermediate metabolism (including PC, ACLY, and PLCG1) and insulin/insulin-like signaling (including IGF1, IGFBP2, and PRKCE) and replicated by bisulfite pyrosequening (independent n = 39). Transcription factor binding sites at NAFLD-specific CpG sites were >1,000-fold enriched for ZNF274, PGC1A, and SREBP2. Intraindividual comparison of liver biopsies before and after bariatric surgery showed NAFLD-associated methylation changes to be partially reversible. Postbariatric and NAFLD-specific methylation signatures were clearly distinct both in gene ontology and transcription factor binding site analyses, with >400-fold enrichment of NRF1, HSF1, and ESRRA sites. Our findings provide an example of treatment-induced epigenetic organ remodeling in humans.


Oncogene | 2009

Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2)

Alexander Arlt; I Bauer; Clemens Schafmayer; Jürgen Tepel; S Sebens Müerköster; Mario Brosch; Christian Röder; Holger Kalthoff; Jochen Hampe; M P Moyer; Ulrich R. Fölsch

An elevated proteasome activity contributes to tumorigenesis, particularly by providing cancer cells with antiapoptotic protection and efficient clearance from irregular proteins. Still, the underlying mechanisms are poorly known. In this study, we report that in colon cancer patients, higher proteasome activity was detected in tumoral tissue compared with surrounding normal tissue, and also that increased levels of proteasomal subunit proteins, such as S5a/PSMD4 and α-5/PSMA5, could be detected. Colon tumors showed higher nuclear levels of nuclear factor E2-related factor 2 (Nrf2), a transcription factor supposed to be involved in the control of proteasomal subunit protein expression. The induction or overexpression of Nrf2 led to stronger S5a and α-5 expression in the human colon cancer cell lines, Colo320 and Lovo, as well as in NCM460 colonocytes along with higher proteasome activity. The small interfering RNA (siRNA)-mediated Nrf2 knockdown decreased S5a and α-5 expression and reduced proteasome activity. Additionally, Nrf2-dependent S5a and α-5 expression conferred protection from tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, an effect preceded by an increased nuclear factor (NF)-κB activation and higher expression of antiapoptotic NF-κB target genes. These findings point to an important role of Nrf2 in the gain of proteasome activity, thereby contributing to colorectal carcinogenesis. Nrf2 may therefore serve as a potential target in anticancer therapy.


Nature Genetics | 2015

A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis

Stephan Buch; Felix Stickel; Eric Trepo; Michael Way; Alexander M. Herrmann; Hans Dieter Nischalke; Mario Brosch; Jonas Rosendahl; T. Berg; Monika Ridinger; Marcella Rietschel; Andrew McQuillin; Josef Frank; Falk Kiefer; Stefan Schreiber; Wolfgang Lieb; Michael Soyka; Nasser Semmo; Elmar Aigner; Christian Datz; Renate Schmelz; Stefan Brückner; Sebastian Zeissig; Anna-Magdalena Stephan; Norbert Wodarz; Jacques Devière; Nicolas Clumeck; Christoph Sarrazin; Frank Lammert; Thierry Gustot

Alcohol misuse is the leading cause of cirrhosis and the second most common indication for liver transplantation in the Western world. We performed a genome-wide association study for alcohol-related cirrhosis in individuals of European descent (712 cases and 1,426 controls) with subsequent validation in two independent European cohorts (1,148 cases and 922 controls). We identified variants in the MBOAT7 (P = 1.03 × 10−9) and TM6SF2 (P = 7.89 × 10−10) genes as new risk loci and confirmed rs738409 in PNPLA3 as an important risk locus for alcohol-related cirrhosis (P = 1.54 × 10−48) at a genome-wide level of significance. These three loci have a role in lipid processing, suggesting that lipid turnover is important in the pathogenesis of alcohol-related cirrhosis.


Gastroenterology | 2010

Loci From a Genome-Wide Analysis of Bilirubin Levels Are Associated With Gallstone Risk and Composition

Stephan Buch; Clemens Schafmayer; Henry Völzke; Marcus Seeger; Juan Francisco Miquel; Silvia Sookoian; Jan Hendrik Egberts; Alexander Arlt; Carlos J. Pirola; Markus M. Lerch; Ulrich John; Andre Franke; Oliver von Kampen; Mario Brosch; Michael Nothnagel; Wolfgang Kratzer; Bernhard O. Boehm; Dieter C. Bröring; Stefan Schreiber; Michael Krawczak; Jochen Hampe

BACKGROUND & AIMS Genome-wide association studies have mapped loci that are associated with serum levels of bilirubin. Bilirubin is a major component of gallstones so we investigated whether these variants predict gallstone bilirubin content and overall risk for gallstones. METHODS Loci that were identified in a meta-analysis to attain a genome-wide significance level of a P value less than 1.0×10(-7) (UGT1A1, SLCO1B1, LST-3TM12, SLCO1A2) were analyzed in 1018 individuals with known gallstone composition. Gallstone risk was analyzed in 2606 German choleystecomized individuals and 1121 controls and was replicated in 210 cases and 496 controls from South America. RESULTS By using the presence of bilirubin as a phenotype, variants rs6742078 (UGT1A1; P = .003), rs4149056 (SLCO1B1; P = .003), and rs4149000 (SLCO1A2; P = .015) were associated with gallstone composition. In regression analyses, only UGT1A1 and SLCO1B1 were independently retained in the model. UGT1A1 (rs6742078; P = .018) was associated with overall gallstone risk. In a sex-stratified analysis, only male carriers of rs6742078 had an increased risk for gallstone disease (P = 2.1×10(-7); odds ratio(recessive), 2.34; P(women) = .47). The sex-specific association of rs6742078 was confirmed in samples from South America (P(men) = .046; odds ratio(recessive), 2.19; P(women) = .96). CONCLUSIONS The UGT1A1 Gilbert syndrome variant rs6742078 is associated with gallstone disease in men; further studies are required regarding the sex-specific physiology of bilirubin and bile acid metabolism. Variants of ABCG8 and UGT1A1 are the 2 major risk factors for overall gallstone disease, they contribute a population attributable risk of 21.2% among men.


International Journal of Cancer | 2012

Distinct DNA methylation patterns in cirrhotic liver and hepatocellular carcinoma

Ole Ammerpohl; Johann Pratschke; Clemens Schafmayer; Andrea Haake; Wladimir Faber; Oliver von Kampen; Mario Brosch; Bence Sipos; Witigo von Schönfels; Katharina Balschun; Christoph Röcken; Alexander Arlt; Bodo Schniewind; Jonas Grauholm; Holger Kalthoff; Peter Neuhaus; Felix Stickel; Stefan Schreiber; Thomas Becker; Reiner Siebert; Jochen Hampe

Abberrant DNA methylation is one of the hallmarks of cancerogenesis. Our study aims to delineate differential DNA methylation in cirrhosis and hepatic cancerogenesis. Patterns of methylation of 27,578 individual CpG loci in 12 hepatocellular carcinomas (HCCs), 15 cirrhotic controls and 12 normal liver samples were investigated using an array‐based technology. A supervised principal component analysis (PCA) revealed 167 hypomethylated loci and 100 hypermethylated loci in cirrhosis and HCC as compared to normal controls. Thus, these loci show a “cirrhotic” methylation pattern that is maintained in HCC. In pairwise supervised PCAs between normal liver, cirrhosis and HCC, eight loci were significantly changed in all analyses differentiating the three groups (p < 0.0001). Of these, five loci showed highest methylation levels in HCC and lowest in control tissue (LOC55908, CELSR1, CRMP1, GNRH2, ALOX12 and ANGPTL7), whereas two loci showed the opposite direction of change (SPRR3 and TNFSF15). Genes hypermethylated between normal liver to cirrhosis, which maintain this methylation pattern during the development of HCC, are depleted for CpG islands, high CpG content promoters and polycomb repressive complex 2 (PRC2) targets in embryonic stem cells. In contrast, genes selectively hypermethylated in HCC as compared to nonmalignant samples showed an enrichment of CpG islands, high CpG content promoters and PRC2 target genes (p < 0.0001). Cirrhosis and HCC show distinct patterns of differential methylation with regards to promoter structure, PRC2 targets and CpG islands.


Gastroenterology | 2016

Comparison of Gene Expression Patterns Between Mouse Models of Nonalcoholic Fatty Liver Disease and Liver Tissues From Patients

Andreas Teufel; T Itzel; Wiebke Erhart; Mario Brosch; X.-Y. Wang; Y.O. Kim; Witigo von Schönfels; Alexander M. Herrmann; Stefan Brückner; Felix Stickel; Jean-François Dufour; Triantafyllos Chavakis; Claus Hellerbrand; Rainer Spang; Thorsten Maass; Thomas Becker; Stefan Schreiber; Clemens Schafmayer; Detlef Schuppan; Jochen Hampe

BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries. Mouse models of NAFLD have been used in studies of pathogenesis and treatment, and have certain features of the human disease. We performed a systematic transcriptome-wide analysis of liver tissues from patients at different stages of NAFLD progression (ranging from healthy obese individuals to those with steatosis), as well as rodent models of NAFLD, to identify those that most closely resemble human disease progression in terms of gene expression patterns. METHODS We performed a systematic evaluation of genome-wide messenger RNA expression using liver tissues collected from mice fed a standard chow diet (controls) and 9 mouse models of NAFLD: mice on a high-fat diet (with or without fructose), mice on a Western-type diet, mice on a methionine- and choline-deficient diet, mice on a high-fat diet given streptozotocin, and mice with disruption of Pten in hepatocytes. We compared gene expression patterns with those of liver tissues from 25 patients with nonalcoholic steatohepatitis (NASH), 27 patients with NAFLD, 15 healthy obese individuals, and 39 healthy nonobese individuals (controls). Liver samples were obtained from patients undergoing liver biopsy for suspected NAFLD or NASH, or during liver or bariatric surgeries. Data sets were analyzed using the limma R-package. Overlap of functional profiles was analyzed by gene set enrichment analysis profiles. RESULTS We found differences between human and mouse transcriptomes to be significantly larger than differences between disease stages or models. Of the 65 genes with significantly altered expression in patients with NASH and 177 genes with significantly altered expression in patients with NAFLD, compared with controls, only 1-18 of these genes also differed significantly in expression between mouse models of NAFLD and control mice. However, expression of genes that regulate pathways associated with the development of NAFLD were altered in some mouse models (such as pathways associated with lipid metabolism). On a pathway level, gene expression patterns in livers of mice on the high-fat diet were associated more closely with human fatty liver disease than other models. CONCLUSIONS In comparing gene expression profiles between liver tissues from different mouse models of NAFLD and patients with different stages of NAFLD, we found very little overlap. Our data set is available for studies of pathways that contribute to the development of NASH and NAFLD and selection of the most applicable mouse models (http://www.nash-profiler.com).


International Journal of Cancer | 2007

Genetic investigation of DNA‐repair pathway genes PMS2, MLH1, MSH2, MSH6, MUTYH, OGG1 and MTH1 in sporadic colon cancer

Clemens Schafmayer; Stephan Buch; Jan Hendrik Egberts; Andre Franke; Mario Brosch; Abdou El Sharawy; Mareike Conring; Maralde Koschnick; Sven Schwiedernoch; Alexander Katalinic; Bernd Kremer; Ulrich R. Fölsch; Michael Krawczak; Fred Fändrich; Stefan Schreiber; Jürgen Tepel; Jochen Hampe

Mutations in DNA repair genes have previously been identified as causative factors for hereditary nonpolyposis colon cancer (HNPCC). Recent evidence also supports an association between DNA sequence variation in these genes and sporadic colorectal carcinoma (CRC). Genetic investigation of DNA repair genes PMS2, MLH1, MSH2, MSH6, MUTYH, OGG1 and MTH1, as possible susceptibility factors for sporadic CRC, was done using both a haplotype tagging and a candidate (i.e. coding) single nucleotide polymorphism (SNP) approach. Some 1,068 patients with operated CRC (median age at diagnosis: 59 years) were compared to 738 sex‐matched control individuals (median age: 67 years). Haplotype tagging SNPs, previously reported risk variants and all known coding SNPs with a minor allele frequency >0.005 were genotyped in PMS2 (N = 10), MLH1 (N = 11), MSH2 (N = 18), MSH6 (N = 15), MUTYH (N = 7), OGG1 (N = 11) and MTH1 (N = 3). No evidence for an association between CRC and any of the 7 genes was detected, neither with the tagging or coding SNPs nor in a sliding window haplotype analysis (all nominal p‐values >0.05). The previously reported risk variants D132H in MLH1 and R154H in OGG1 were not even observed in the German population. Genetic CRC risk factors so far identified in DNA repair genes seem to be rare and population‐specific. Their association with the disease could not be replicated in German CRC samples. It remains to be elucidated by more systematic, large‐scale experiments whether common variants in the same genes, but present across populations, represent risk factors for sporadic CRC.


Hepatology | 2013

Genetic and functional identification of the likely causative variant for cholesterol gallstone disease at the ABCG5/8 lithogenic locus†

Oliver von Kampen; Stephan Buch; Michael Nothnagel; Lorena Azocar; Héctor Molina; Mario Brosch; Wiebke Erhart; Witigo von Schönfels; Jan Hendrik Egberts; Marcus Seeger; Alexander Arlt; Tobias Balschun; Andre Franke; Markus M. Lerch; Julia Mayerle; Wolfgang Kratzer; Bernhard O. Boehm; Klaus Huse; Bodo Schniewind; Katharina Tiemann; Zhao‐Yan Jiang; Tian‐Quan Han; Balraj Mittal; Anshika Srivastava; Mogens Fenger; Torben Jørgensen; Ramin Schirin-Sokhan; Anke Tönjes; Henning Wittenburg; Michael Stumvoll

The sterolin locus (ABCG5/ABCG8) confers susceptibility for cholesterol gallstone disease in humans. Both the responsible variant and the molecular mechanism causing an increased incidence of gallstones in these patients have as yet not been identified. Genetic mapping utilized patient samples from Germany (2,808 cases, 2,089 controls), Chile (680 cases, 442 controls), Denmark (366 cases, 766 controls), India (247 cases, 224 controls), and China (280 cases, 244 controls). Analysis of allelic imbalance in complementary DNA (cDNA) samples from human liver (n = 22) was performed using pyrosequencing. Transiently transfected HEK293 cells were used for [3H]‐cholesterol export assays, analysis of protein expression, and localization of allelic constructs. Through fine mapping in German and Chilean samples, an ∼250 kB disease‐associated interval could be defined for this locus. Lack of allelic imbalance or allelic splicing of the ABCG5 and ABCG8 transcripts in human liver limited the search to coding single nucleotide polymorphisms. Subsequent mutation detection and genotyping yielded two disease‐associated variants: ABCG5‐R50C (P = 4.94 × 10−9) and ABCG8‐D19H (P = 1.74 × 10−10) in high pairwise linkage disequilibrium (r2 = 0.95). [3H]‐cholesterol export assays of allelic constructs harboring these genetic candidate variants demonstrated increased transport activity (3.2‐fold, P = 0.003) only for the ABCG8‐19H variant, which was also superior in nested logistic regression models in German (P = 0.018), Chilean (P = 0.030), and Chinese (P = 0.040) patient samples. Conclusion: This variant thus provides a molecular basis for biliary cholesterol hypersecretion as the mechanism for cholesterol gallstone formation, thereby drawing a link between “postgenomic” and “pregenomic” pathophysiological knowledge about this common complex disorder. (HEPATOLOGY 2012)

Collaboration


Dive into the Mario Brosch's collaboration.

Top Co-Authors

Avatar

Jochen Hampe

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan Buch

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bence Sipos

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge