Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Witigo von Schönfels is active.

Publication


Featured researches published by Witigo von Schönfels.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Obesity accelerates epigenetic aging of human liver

Steve Horvath; Wiebke Erhart; Mario Brosch; Ole Ammerpohl; Witigo von Schönfels; Markus Ahrens; Nils Heits; Jordana T. Bell; Pei-Chien Tsai; Tim D. Spector; Panos Deloukas; Reiner Siebert; Bence Sipos; Thomas Becker; Christoph Röcken; Clemens Schafmayer; Jochen Hampe

Significance Because obese people are at an increased risk of many age-related diseases, it is a plausible hypothesis that obesity increases the biological age of some tissues and cell types. However, it has been difficult to detect such an accelerated aging effect because it is unclear how to measure tissue age. Here we use a recently developed biomarker of aging (known as “epigenetic clock”) to study the relationship between epigenetic age and obesity in several human tissues. We report an unexpectedly strong correlation between high body mass index and the epigenetic age of liver tissue. This finding may explain why obese people suffer from the early onset of many age-related pathologies, including liver cancer. Because of the dearth of biomarkers of aging, it has been difficult to test the hypothesis that obesity increases tissue age. Here we use a novel epigenetic biomarker of aging (referred to as an “epigenetic clock”) to study the relationship between high body mass index (BMI) and the DNA methylation ages of human blood, liver, muscle, and adipose tissue. A significant correlation between BMI and epigenetic age acceleration could only be observed for liver (r = 0.42, P = 6.8 × 10−4 in dataset 1 and r = 0.42, P = 1.2 × 10−4 in dataset 2). On average, epigenetic age increased by 3.3 y for each 10 BMI units. The detected age acceleration in liver is not associated with the Nonalcoholic Fatty Liver Disease Activity Score or any of its component traits after adjustment for BMI. The 279 genes that are underexpressed in older liver samples are highly enriched (1.2 × 10−9) with nuclear mitochondrial genes that play a role in oxidative phosphorylation and electron transport. The epigenetic age acceleration, which is not reversible in the short term after rapid weight loss induced by bariatric surgery, may play a role in liver-related comorbidities of obesity, such as insulin resistance and liver cancer.


Cell Metabolism | 2013

DNA Methylation Analysis in Nonalcoholic Fatty Liver Disease Suggests Distinct Disease-Specific and Remodeling Signatures after Bariatric Surgery

Markus Ahrens; Ole Ammerpohl; Witigo von Schönfels; Julia Kolarova; Susanne Bens; T Itzel; Andreas Teufel; Alexander M. Herrmann; Mario Brosch; Holger Hinrichsen; Wiebke Erhart; Jan Hendrik Egberts; Bence Sipos; Stefan Schreiber; Robert Häsler; Felix Stickel; Thomas Becker; Michael Krawczak; Christoph Röcken; Reiner Siebert; Clemens Schafmayer; Jochen Hampe

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries. Liver samples from morbidly obese patients (n = 45) with all stages of NAFLD and controls (n = 18) were analyzed by array-based DNA methylation and mRNA expression profiling. NAFLD-specific expression and methylation differences were seen for nine genes coding for key enzymes in intermediate metabolism (including PC, ACLY, and PLCG1) and insulin/insulin-like signaling (including IGF1, IGFBP2, and PRKCE) and replicated by bisulfite pyrosequening (independent n = 39). Transcription factor binding sites at NAFLD-specific CpG sites were >1,000-fold enriched for ZNF274, PGC1A, and SREBP2. Intraindividual comparison of liver biopsies before and after bariatric surgery showed NAFLD-associated methylation changes to be partially reversible. Postbariatric and NAFLD-specific methylation signatures were clearly distinct both in gene ontology and transcription factor binding site analyses, with >400-fold enrichment of NRF1, HSF1, and ESRRA sites. Our findings provide an example of treatment-induced epigenetic organ remodeling in humans.


International Journal of Cancer | 2012

Distinct DNA methylation patterns in cirrhotic liver and hepatocellular carcinoma

Ole Ammerpohl; Johann Pratschke; Clemens Schafmayer; Andrea Haake; Wladimir Faber; Oliver von Kampen; Mario Brosch; Bence Sipos; Witigo von Schönfels; Katharina Balschun; Christoph Röcken; Alexander Arlt; Bodo Schniewind; Jonas Grauholm; Holger Kalthoff; Peter Neuhaus; Felix Stickel; Stefan Schreiber; Thomas Becker; Reiner Siebert; Jochen Hampe

Abberrant DNA methylation is one of the hallmarks of cancerogenesis. Our study aims to delineate differential DNA methylation in cirrhosis and hepatic cancerogenesis. Patterns of methylation of 27,578 individual CpG loci in 12 hepatocellular carcinomas (HCCs), 15 cirrhotic controls and 12 normal liver samples were investigated using an array‐based technology. A supervised principal component analysis (PCA) revealed 167 hypomethylated loci and 100 hypermethylated loci in cirrhosis and HCC as compared to normal controls. Thus, these loci show a “cirrhotic” methylation pattern that is maintained in HCC. In pairwise supervised PCAs between normal liver, cirrhosis and HCC, eight loci were significantly changed in all analyses differentiating the three groups (p < 0.0001). Of these, five loci showed highest methylation levels in HCC and lowest in control tissue (LOC55908, CELSR1, CRMP1, GNRH2, ALOX12 and ANGPTL7), whereas two loci showed the opposite direction of change (SPRR3 and TNFSF15). Genes hypermethylated between normal liver to cirrhosis, which maintain this methylation pattern during the development of HCC, are depleted for CpG islands, high CpG content promoters and polycomb repressive complex 2 (PRC2) targets in embryonic stem cells. In contrast, genes selectively hypermethylated in HCC as compared to nonmalignant samples showed an enrichment of CpG islands, high CpG content promoters and PRC2 target genes (p < 0.0001). Cirrhosis and HCC show distinct patterns of differential methylation with regards to promoter structure, PRC2 targets and CpG islands.


Gastroenterology | 2016

Comparison of Gene Expression Patterns Between Mouse Models of Nonalcoholic Fatty Liver Disease and Liver Tissues From Patients

Andreas Teufel; T Itzel; Wiebke Erhart; Mario Brosch; X.-Y. Wang; Y.O. Kim; Witigo von Schönfels; Alexander M. Herrmann; Stefan Brückner; Felix Stickel; Jean-François Dufour; Triantafyllos Chavakis; Claus Hellerbrand; Rainer Spang; Thorsten Maass; Thomas Becker; Stefan Schreiber; Clemens Schafmayer; Detlef Schuppan; Jochen Hampe

BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries. Mouse models of NAFLD have been used in studies of pathogenesis and treatment, and have certain features of the human disease. We performed a systematic transcriptome-wide analysis of liver tissues from patients at different stages of NAFLD progression (ranging from healthy obese individuals to those with steatosis), as well as rodent models of NAFLD, to identify those that most closely resemble human disease progression in terms of gene expression patterns. METHODS We performed a systematic evaluation of genome-wide messenger RNA expression using liver tissues collected from mice fed a standard chow diet (controls) and 9 mouse models of NAFLD: mice on a high-fat diet (with or without fructose), mice on a Western-type diet, mice on a methionine- and choline-deficient diet, mice on a high-fat diet given streptozotocin, and mice with disruption of Pten in hepatocytes. We compared gene expression patterns with those of liver tissues from 25 patients with nonalcoholic steatohepatitis (NASH), 27 patients with NAFLD, 15 healthy obese individuals, and 39 healthy nonobese individuals (controls). Liver samples were obtained from patients undergoing liver biopsy for suspected NAFLD or NASH, or during liver or bariatric surgeries. Data sets were analyzed using the limma R-package. Overlap of functional profiles was analyzed by gene set enrichment analysis profiles. RESULTS We found differences between human and mouse transcriptomes to be significantly larger than differences between disease stages or models. Of the 65 genes with significantly altered expression in patients with NASH and 177 genes with significantly altered expression in patients with NAFLD, compared with controls, only 1-18 of these genes also differed significantly in expression between mouse models of NAFLD and control mice. However, expression of genes that regulate pathways associated with the development of NAFLD were altered in some mouse models (such as pathways associated with lipid metabolism). On a pathway level, gene expression patterns in livers of mice on the high-fat diet were associated more closely with human fatty liver disease than other models. CONCLUSIONS In comparing gene expression profiles between liver tissues from different mouse models of NAFLD and patients with different stages of NAFLD, we found very little overlap. Our data set is available for studies of pathways that contribute to the development of NASH and NAFLD and selection of the most applicable mouse models (http://www.nash-profiler.com).


Hepatology | 2013

Genetic and functional identification of the likely causative variant for cholesterol gallstone disease at the ABCG5/8 lithogenic locus†

Oliver von Kampen; Stephan Buch; Michael Nothnagel; Lorena Azocar; Héctor Molina; Mario Brosch; Wiebke Erhart; Witigo von Schönfels; Jan Hendrik Egberts; Marcus Seeger; Alexander Arlt; Tobias Balschun; Andre Franke; Markus M. Lerch; Julia Mayerle; Wolfgang Kratzer; Bernhard O. Boehm; Klaus Huse; Bodo Schniewind; Katharina Tiemann; Zhao‐Yan Jiang; Tian‐Quan Han; Balraj Mittal; Anshika Srivastava; Mogens Fenger; Torben Jørgensen; Ramin Schirin-Sokhan; Anke Tönjes; Henning Wittenburg; Michael Stumvoll

The sterolin locus (ABCG5/ABCG8) confers susceptibility for cholesterol gallstone disease in humans. Both the responsible variant and the molecular mechanism causing an increased incidence of gallstones in these patients have as yet not been identified. Genetic mapping utilized patient samples from Germany (2,808 cases, 2,089 controls), Chile (680 cases, 442 controls), Denmark (366 cases, 766 controls), India (247 cases, 224 controls), and China (280 cases, 244 controls). Analysis of allelic imbalance in complementary DNA (cDNA) samples from human liver (n = 22) was performed using pyrosequencing. Transiently transfected HEK293 cells were used for [3H]‐cholesterol export assays, analysis of protein expression, and localization of allelic constructs. Through fine mapping in German and Chilean samples, an ∼250 kB disease‐associated interval could be defined for this locus. Lack of allelic imbalance or allelic splicing of the ABCG5 and ABCG8 transcripts in human liver limited the search to coding single nucleotide polymorphisms. Subsequent mutation detection and genotyping yielded two disease‐associated variants: ABCG5‐R50C (P = 4.94 × 10−9) and ABCG8‐D19H (P = 1.74 × 10−10) in high pairwise linkage disequilibrium (r2 = 0.95). [3H]‐cholesterol export assays of allelic constructs harboring these genetic candidate variants demonstrated increased transport activity (3.2‐fold, P = 0.003) only for the ABCG8‐19H variant, which was also superior in nested logistic regression models in German (P = 0.018), Chilean (P = 0.030), and Chinese (P = 0.040) patient samples. Conclusion: This variant thus provides a molecular basis for biliary cholesterol hypersecretion as the mechanism for cholesterol gallstone formation, thereby drawing a link between “postgenomic” and “pregenomic” pathophysiological knowledge about this common complex disorder. (HEPATOLOGY 2012)


International Journal of Cancer | 2009

Investigation of the colorectal cancer susceptibility region on chromosome 8q24.21 in a large German case-control sample.

Clemens Schafmayer; Stephan Buch; Henry Völzke; Witigo von Schönfels; Jan Hendrik Egberts; Bodo Schniewind; Mario Brosch; Andreas Ruether; Andre Franke; Micaela Mathiak; Bence Sipos; Tobias Henopp; Jasmin Catalcali; Stephan Hellmig; Abdou ElSharawy; Alexander Katalinic; Markus M. Lerch; Ulrich John; Ulrich R. Fölsch; Fred Fändrich; Holger Kalthoff; Stefan Schreiber; Michael Krawczak; Jiirgen Tepel; Jochen Hampe

Human chromosome 8q24.21 has been implicated as a susceptibility region for colorectal cancer (CRC) as a result of genome‐wide association and candidate gene studies. To assess the impact of molecular variants at 8q24.21 upon the CRC risk of German individuals and to refine the disease‐associated region, a total of 2,713 patients with operated CRC (median age at diagnosis: 63 years) were compared with 2,718 sex‐matched control individuals (median age at inclusion: 65 years). Information on microsatellite instability in tumors was available for 901 patients. Association analysis of SNPs rs10505477 and rs6983267 yielded allelic p‐values of 1.42 × 10−7 and 2.57 × 10−7, respectively. For both polymorphisms, the odds ratio was estimated to be 1.50 (95% CI: 1.29–1.75) under a recessive disease model. The strongest candidate interval, outside of which significance dropped by more than 4 orders of magnitude, was delineated by SNPs rs10505477 and rs7014346 and comprised 17 kb. In a subgroup analysis, the disease association was found to be more pronounced in MSI‐stable tumors (odds ratio: 1.71). Our study confirms the role of genetic variation at 8q24.21 as a risk factor for CRC and localizes the corresponding susceptibility gene to a 17 kb candidate region.


BMC Gastroenterology | 2009

Investigation of innate immunity genes CARD4, CARD8 and CARD15 as germline susceptibility factors for colorectal cancer.

Nikolaus Möckelmann; Witigo von Schönfels; Stephan Buch; Oliver von Kampen; Bence Sipos; Jan Hendrik Egberts; Philip Rosenstiel; Andre Franke; Mario Brosch; Sebastian Hinz; Christian Röder; Holger Kalthoff; Ulrich R. Fölsch; Michael Krawczak; Stefan Schreiber; Clemens Dieter Bröring; Jürgen Tepel; Clemens Schafmayer; Jochen Hampe

BackgroundVariation in genes involved in the innate immune response may play a role in the predisposition to colorectal cancer (CRC). Several polymorphisms of the CARD15 gene (caspase activating recruitment domain, member 15) have been reported to be associated with an increased susceptibility to Crohn disease. Since the CARD15 gene product and other CARD proteins function in innate immunity, we investigated the impact of germline variation at the CARD4, CARD8 and CARD15 loci on the risk for sporadic CRC, using a large patient sample from Northern Germany.MethodsA total of 1044 patients who had been operated with sporadic colorectal carcinoma (median age at diagnosis: 59 years) were recruited and compared to 724 sex-matched, population-based control individuals (median age: 68 years). Genetic investigation was carried out following both a coding SNP and haplotype tagging approach. Subgroup analyses for N = 143 patients with early manifestation of CRC (≤50 age at diagnosis) were performed for all CARD loci and subgroup analyses for diverse age strata were carried out for CARD15 mutations R702W, G908R and L1007fs. In addition, all SNPs were tested for association with disease presentation and family history of CRC.ResultsNo significant differences were observed between the patient and control allelic or haplotypic spectra of the three genes under study for the total cohort (N = 1044 patients). None of the analysed SNPs was significantly associated with either tumour location or yielded significant association in the familial or non-familial CRC patient subgroups. However, in a patient subgroup (≤45 age at diagnosis) with early disease manifestation the mutant allele of CARD15 R702W was found to be significantly associated with disease susceptibility (9.7% in cases vs 4.6% in controls; Pallelic = 0.008, Pgenotypic = 0.0008, ORallelic = 2.22 (1.21-4.05) ORressessive = 21.9 (1.96-245.4).ConclusionVariation in the innate immunity genes CARD4, CARD8 and CARD15 is unlikely to play a major role in the susceptibility to CRC in the German population. But, we report a significant disease contribution of CARD15 for CRC patients with very early disease manifestation, mainly driven by variant R702W.


The Journal of Molecular Diagnostics | 2011

KRAS, NRAS, PIK3CA Exon 20, and BRAF Genotypes in Synchronous and Metachronous Primary Colorectal Cancers: Diagnostic and Therapeutic Implications

Katharina Balschun; Jochen Haag; Ann Kathrin Wenke; Witigo von Schönfels; Nicolas T. Schwarz; Christoph Röcken

Targeted therapy of advanced colorectal carcinoma (CRC) necessitates KRAS genotyping. Because we were interested in diagnostic and therapeutic consequences, we studied the KRAS, NRAS, PIK3CA exon 20, and BRAF genotypes in synchronous and metachronous primary CRCs; in addition, we studied their available metastases. We studied 21 patients with 43 synchronous and 2 metachronous adenocarcinomas of the colorectum (n = 20) and stomach (n = 1). Five patients had liver metastases and one had a distant lymph node metastasis. Genomic DNA was extracted from microdissected tumor tissue. The DNA was analyzed by Sanger sequencing and pyrosequencing. Fifty-seven different neoplastic lesions were genotyped, showing 18 (31.6%) KRAS, 2 (3.5%) NRAS, and 7 (12.3%) BRAF mutations, distributed among 10 (47.6%), 1 (4.8%), and 5 (23.8%) of the patients. An identical genotype of all synchronous primary CRCs was found only in 7 (35%) of the patients; the remainder had dissimilar genotypes in various combinations. Interestingly, a single patient had an unknown KRAS genotype (c.37_39dupGGC). Six patients with 13 primary carcinomas had distant metastases. In three of these patients, the metastasis shared the genotype only with one of the primary tumors, because the other primary tumors had another genotype. Synchronous and metachronous primary CRCs of the same patient have variable KRAS, NRAS, and BRAF genotypes. When metastases occur in these patients, the genotype has diagnostic and therapeutic implications and should be determined from the simultaneous or metachronous distant metastases.


Cancer Research | 2013

Functional TLR5 genetic variants affect human colorectal cancer survival

Sascha N. Klimosch; Asta Försti; Jana Eckert; Jelena Knežević; Melanie Bevier; Witigo von Schönfels; Nils Heits; Jessica Walter; Sebastian Hinz; Jesús Lascorz; Jochen Hampe; Dominik Hartl; Julia S. Frick; Kari Hemminki; Clemens Schafmayer; Alexander N. R. Weber

Toll-like receptors (TLR) are overexpressed on many types of cancer cells, including colorectal cancer cells, but little is known about the functional relevance of these immune regulatory molecules in malignant settings. Here, we report frequent single-nucleotide polymorphisms (SNP) in the flagellin receptor TLR5 and the TLR downstream effector molecules MyD88 and TIRAP that are associated with altered survival in a large cohort of Caucasian patients with colorectal cancer (n = 613). MYD88 rs4988453, a SNP that maps to a promoter region shared with the acetyl coenzyme-A acyl-transferase-1 (ACAA1), was associated with decreased survival of patients with colorectal cancer and altered transcriptional activity of the proximal genes. In the TLR5 gene, rs5744174/F616L was associated with increased survival, whereas rs2072493/N592S was associated with decreased survival. Both rs2072493/N592S and rs5744174/F616L modulated TLR5 signaling in response to flagellin or to different commensal and pathogenic intestinal bacteria. Notably, we observed a reduction in flagellin-induced p38 phosphorylation, CD62L shedding, and elevated expression of interleukin (IL)-6 and IL-1β mRNA in human primary immune cells from TLR5 616LL homozygote carriers, as compared with 616FF carriers. This finding suggested that the well-documented effect of cytokines like IL-6 on colorectal cancer progression might be mediated by TLR5 genotype-dependent flagellin sensing. Our results establish an important link between TLR signaling and human colorectal cancer with relevance for biomarker and therapy development.


PLOS ONE | 2012

A Comprehensive Investigation on Common Polymorphisms in the MDR1/ABCB1 Transporter Gene and Susceptibility to Colorectal Cancer

Daniele Campa; Juan Sainz; Barbara Pardini; Ludmila Vodickova; Alessio Naccarati; Anja Rudolph; Jan Novotny; Asta Försti; Stephan Buch; Witigo von Schönfels; Clemens Schafmayer; Henry Völzke; Michael Hoffmeister; Bernd Frank; Roberto Barale; Kari Hemminki; Jochen Hampe; Jenny Chang-Claude; Hermann Brenner; Pavel Vodicka; Federico Canzian

ATP Binding Cassette B1 (ABCB1) is a transporter with a broad substrate specificity involved in the elimination of several carcinogens from the gut. Several polymorphic variants within the ABCB1 gene have been reported as modulators of ABCB1-mediated transport. We investigated the impact of ABCB1 genetic variants on colorectal cancer (CRC) risk. A hybrid tagging/functional approach was performed to select 28 single nucleotide polymorphisms (SNPs) that were genotyped in 1,321 Czech subjects, 699 CRC cases and 622 controls. In addition, six potentially functional SNPs were genotyped in 3,662 German subjects, 1,809 cases and 1,853 controls from the DACHS study. We found that three functional SNPs (rs1202168, rs1045642 and rs868755) were associated with CRC risk in the German population. Carriers of the rs1202168_T and rs868755_T alleles had an increased risk for CRC (Ptrend = 0.016 and 0.029, respectively), while individuals bearing the rs1045642_C allele showed a decreased risk of CRC (Ptrend = 0.022). We sought to replicate the most significant results in an independent case-control study of 3,803 subjects, 2,169 cases and 1,634 controls carried out in the North of Germany. None of the SNPs tested were significantly associated with CRC risk in the replication study. In conclusion, in this study of about 8,800 individuals we show that ABCB1 gene polymorphisms play at best a minor role in the susceptibility to CRC.

Collaboration


Dive into the Witigo von Schönfels's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jochen Hampe

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Brosch

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bence Sipos

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Stephan Buch

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge