Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario Mangold is active.

Publication


Featured researches published by Mario Mangold.


IEEE Journal of Selected Topics in Quantum Electronics | 2012

SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds

Clara J. Saraceno; Cinia Schriber; Mario Mangold; Martin Hoffmann; O. H. Heckl; C. R. E. Baer; Matthias Golling; T. Südmeyer; Ursula Keller

We present for the first time to the best of our knowledge a systematic study of lifetime and damage of semiconductor saturable absorber mirrors (SESAMs) designed for operation in high-power oscillators. We characterize and compare nonlinear reflectivity and inverse saturable absorption (ISA) parameters as well as damage threshold and lifetime of different representative SESAMs under test using a nonlinear reflectivity measurement setup at unprecedented high fluence levels. We investigate the catastrophic damage that occurs at very high fluences by demonstrating a dependence of the damage threshold on the ISA parameter F2 and the maximum reflectivity fluence F0. We can clearly demonstrate that the damage fluence Fd scales proportionally to √F2 for all SESAMs. In the case of SESAMs with the same absorber where the product Fsat .ΔR is constant, the damage fluence Fd scales proportionally to F0. Therefore, damage occurs due to heating of the lattice by the energy absorbed due to the ISA process and is not related to the quantum well (QW) absorbers. Furthermore, we present guidelines on how to design samples with high saturation fluences, reduced induced absorption, and high damage thresholds. Using multiple QWs and a suitable di-electric topsection, we achieved SESAMs with saturation fluences >;200 μj/cm2, nonsaturable losses <;0.1%, and reduced ISA. Our best sample could not be damaged at a maximum available fluence of 0.21 J/cm2 and a peak intensity of 370 GW/cm2. These SESAMs will be suitable for future high-power femtosecond oscillators in the kilowatt average output power regime, which is very interesting for attosecond science and industrial material processing applications.


Optics Express | 2014

Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser.

Mario Mangold; C. A. Zaugg; Sandro M. Link; Matthias Golling; Bauke W. Tilma; Ursula Keller

The high-power semiconductor laser studied here is a modelocked integrated external-cavity surface emitting laser (MIXSEL), which combines the gain of vertical-external-cavity surface-emitting lasers (VECSELs) with the saturable absorber of a semiconductor saturable absorber mirror (SESAM) in a single semiconductor layer stack. The MIXSEL concept allows for stable and self-starting fundamental passive modelocking in a simple straight cavity and the average power scaling is based on the semiconductor disk laser concept. Previously record-high average output power from an optically pumped MIXSEL was demonstrated, however the long pulse duration of 17 ps prevented higher pulse repetition rates and many interesting applications such as supercontinuum generation and broadband frequency comb generation. With a novel MIXSEL structure, the first femtosecond operation was then demonstrated just recently. Here we show that such a MIXSEL can also support pulse repetition rate scaling from ≈5 GHz to >100 GHz with excellent beam quality and high average output power, by mechanically changing the cavity length of the linear straight cavity and the output coupler. Up to a pulse repetition rate of 15 GHz we obtained average output power >1 W and pulse durations <4 ps. Furthermore we have been able to demonstrate the highest pulse repetition rate from any fundamentally modelocked semiconductor disk laser with 101.2 GHz at an average output power of 127 mW and a pulse duration of 570 fs.


Optics Express | 2014

Gigahertz self-referenceable frequency comb from a semiconductor disk laser

C. A. Zaugg; Alexander Klenner; Mario Mangold; Aline S. Mayer; Sandro M. Link; Florian Emaury; Matthias Golling; E. Gini; Clara J. Saraceno; Bauke W. Tilma; Ursula Keller

We present a 1.75-GHz self-referenceable frequency comb from a vertical external-cavity surface-emitting laser (VECSEL) passively modelocked with a semiconductor saturable absorber mirror (SESAM). The VECSEL delivers 231-fs pulses with an average power of 100 mW and is optimized for stable and reliable operation. The optical spectrum was centered around 1038 nm and nearly transform-limited with a full width half maximum (FWHM) bandwidth of 5.5 nm. The pulses were first amplified to an average power of 5.5 W using a backward-pumped Yb-doped double-clad large mode area (LMA) fiber and then compressed to 85 fs with 2.2 W of average power with a passive LMA fiber and transmission gratings. Subsequently, we launched the pulses into a highly nonlinear photonic crystal fiber (PCF) and generated a coherent octave-spanning supercontinuum (SC). We then detected the carrier-envelope offset (CEO) frequency (f(CEO)) beat note using a standard f-to-2f-interferometer. The f(CEO) exhibits a signal-to-noise ratio of 17 dB in a 100-kHz resolution bandwidth and a FWHM of ≈10 MHz. To our knowledge, this is the first report on the detection of the f(CEO) from a semiconductor laser, opening the door to fully stabilized compact frequency combs based on modelocked semiconductor disk lasers.


Optics Express | 2013

Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL).

Mario Mangold; Valentin J. Wittwer; C. A. Zaugg; Sandro M. Link; Matthias Golling; Bauke W. Tilma; Ursula Keller

Novel surface-emitting optically pumped semiconductor lasers have demonstrated >1 W modelocked and >100 W continuous wave (cw) average output power. The modelocked integrated external-cavity surface emitting laser (MIXSEL) combines the gain of vertical-external-cavity surface-emitting lasers (VECSELs) with the saturable absorber of a semiconductor saturable absorber mirror (SESAM) in one single semiconductor structure. This unique concept allows for stable and self-starting passive modelocking in a simple straight cavity. With quantum-dot based absorbers, record-high average output power was demonstrated previously, however the pulse duration was limited to 17 ps so far. Here, we present the first femtosecond MIXSEL emitting pulses with a duration as short as 620 fs at 4.8 GHz repetition rate and 101 mW average output power. The novel MIXSEL structure relies on a single low temperature grown quantum-well saturable absorber with a low saturation fluence and fast recovery dynamics. A detailed characterization of the key modelocking parameters of the absorber and the challenges for absorber integration into the MIXSEL structure are discussed.


Scientific Reports | 2012

1.55 µm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser

Ziyang Zhang; A. E. H. Oehler; B. Resan; S. Kurmulis; Kejia Zhou; Q. Wang; Mario Mangold; T. Süedmeyer; Ursula Keller; Kurt J. Weingarten; Richard A. Hogg

High pulse repetition rate (≥10 GHz) diode-pumped solid-state lasers, modelocked using semiconductor saturable absorber mirrors (SESAMs) are emerging as an enabling technology for high data rate coherent communication systems owing to their low noise and pulse-to-pulse optical phase-coherence. Quantum dot (QD) based SESAMs offer potential advantages to such laser systems in terms of reduced saturation fluence, broader bandwidth, and wavelength flexibility. Here, we describe the development of an epitaxial process for the realization of high optical quality 1.55 µm In(Ga)As QDs on GaAs substrates, their incorporation into a SESAM, and the realization of the first 10 GHz repetition rate QD-SESAM modelocked laser at 1.55 µm, exhibiting ∼2 ps pulse width from an Er-doped glass oscillator (ERGO). With a high areal dot density and strong light emission, this QD structure is a very promising candidate for many other applications, such as laser diodes, optical amplifiers, non-linear and photonic crystal based devices.


Optica | 2016

High-power 100 fs semiconductor disk lasers

Dominik Waldburger; Sandro M. Link; Mario Mangold; Cesare G. E. Alfieri; E. Gini; Matthias Golling; Bauke W. Tilma; Ursula Keller

Optically pumped passively modelocked semiconductor disk lasers (SDLs) provide superior performance in average output power, a broad range of operation wavelengths, and reduced complexity. Here, we present record performance with high average power and pulse durations as short as 100 fs with a semiconductor saturable absorber mirror (SESAM) modelocked vertical external-cavity surface-emitting laser (VECSEL) at a center wavelength of 1034 nm. A comprehensive pulse characterization confirms fundamental modelocking with a close to transform-limited output pulse of 128 fs and with negatively chirped output pulses as short as 107 fs, which are externally compressed to 96 fs with a single path through a 2-mm-thick ZnSe plate. For the “96 fs result” the pulse repetition rate is 1.6 GHz, the average output power is 100 mW, and the pulse peak power is 560 W. The transform-limited optical spectrum could in principle support pulses as short as 65 fs with higher order dispersion compensation. We measured the most relevant spectral and nonlinear VECSEL and SESAM parameters and used them as input parameters for our pulse formation simulations. These simulations agree well with our experimental results and provide an outlook for further performance scaling of ultrafast SDL technology.


Optics Express | 2015

Dual-comb modelocked laser

Sandro M. Link; Alexander Klenner; Mario Mangold; C. A. Zaugg; Matthias Golling; Bauke W. Tilma; Ursula Keller

In this paper we present the first semiconductor disk laser (SDL) emitting simultaneously two collinearly overlapping cross-polarized gigahertz modelocked pulse trains with different pulse repetition rates. Using only a simple photo detector and a microwave spectrum analyzer directly down-converts the frequency comb difference from the optical to the microwave frequency domain. With this setup, the relative carrier-envelope-offset (CEO) frequency can be accessed directly without an f-to2f interferometer. A very compact design is obtained using the modelocked integrated external-cavity surface emitting laser (MIXSEL) which is part of the family of optically pumped SDLs and similar to a vertical external cavity surface emitting laser (VECSEL) but with both gain and saturable absorber integrated into the same semiconductor wafer (i.e. MIXSEL chip). We then simply added an additional intracavity birefringent crystal inside the linear straight cavity between the output coupler and the MIXSEL chip which splits the cavity beam into two collinear but spatially separated cross-polarized beams on the MIXSEL chip. This results in two modelocked collinear and fully overlapping cross-polarized output beams with adjustable pulse repetition frequencies with excellent noise performance. We stabilized both pulse repetition rates of the dual comb MIXSEL.


IEEE Photonics Journal | 2014

Amplitude Noise and Timing Jitter Characterization of a High-Power Mode-Locked Integrated External-Cavity Surface Emitting Laser

Mario Mangold; Sandro M. Link; Alexander Klenner; C. A. Zaugg; Matthias Golling; Bauke W. Tilma; Ursula Keller

We present a timing jitter and amplitude noise characterization of a high-power mode-locked integrated external-cavity surface emitting laser (MIXSEL). In the MIXSEL, the semiconductor saturable absorber of a SESAM is integrated into the structure of a VECSEL to start and stabilize passive mode-locking. In comparison to previous noise characterization of SESAM-mode-locked VECSELs, this first noise characterization of a MIXSEL is performed at a much higher average output power. In a free-running operation, the laser generates 14.3-ps pulses at an average output power of 645 mW at a 2-GHz pulse repetition rate and an RMS amplitude noise of 0.15% [1 Hz, 10 MHz]. We measured an RMS timing jitter of 129 fs [100 Hz, 10 MHz], which represents the lowest value for a free-running passively mode-locked semiconductor disk laser to date. Additionally, we stabilized the pulse repetition rate with a piezo actuator to control the cavity length. With the laser generating 16.7-ps pulses at an average output power of 701 mW, the repetition frequency was phase-locked to a low-noise electronic reference using a feedback loop. In actively stabilized operation, the RMS timing jitter was reduced to less than 70 fs [1 Hz, 100 MHz]. In the 100-Hz to 10-MHz bandwidth, we report the lowest timing jitter measured from a passively mode-locked semiconductor disk laser to date with a value of 31 fs. These results show that the MIXSEL technology provides compact ultrafast laser sources combining high-power and low-noise performance similar to diode-pumped solid-state lasers, which enable world-record optical communication rates and low-noise frequency combs.


Optics Express | 2012

VECSEL gain characterization.

Mario Mangold; Valentin J. Wittwer; Oliver D. Sieber; Martin Hoffmann; Igor L. Krestnikov; Daniil A. Livshits; Matthias Golling; Thomas Südmeyer; Ursula Keller

We present the first full gain characterization of two vertical external cavity surface emitting laser (VECSEL) gain chips with similar designs operating in the 960-nm wavelength regime. We optically pump the structures with continuous-wave (cw) 808-nm radiation and measure the nonlinear reflectivity for 130-fs and 1.4-ps probe pulses as function of probe pulse fluence, pump power, and heat sink temperature. With this technique we are able to measure the saturation behavior for VECSEL gain chips for the first time. The characterization with 1.4-ps pulses resulted in saturation fluences of 40-80 μJ/cm2, while probing with 130-fs pulses yields reduced saturation fluences of 30-50 μJ/cm2 for both structures. For both pulse durations this is lower than previously assumed. A small-signal gain of up to 5% is obtained with this technique. Furthermore, in a second measurement setup, we characterize the spectral dependence of the gain using a tunable cw probe beam. We measure a gain bandwidth of over 26 nm for both structures, full width at half maximum.


Optics Express | 2011

Femtosecond VECSEL with tunable multi-gigahertz repetition rate.

Oliver D. Sieber; Valentin J. Wittwer; Mario Mangold; Martin Hoffmann; Matthias Golling; Thomas Südmeyer; Ursula Keller

We present a femtosecond vertical external cavity surface emitting laser (VECSEL) that is continuously tunable in repetition rate from 6.5 GHz up to 11.3 GHz. The use of a low-saturation fluence semiconductor saturable absorber mirror (SESAM) enables stable cw modelocking with a simple cavity design, for which the laser mode area on SESAM and VECSEL are similar and do not significantly change for a variation in cavity length. Without any realignment of the cavity for the full tuning range, the pulse duration remained nearly constant around 625 fs with less than 3.5% standard deviation. The center wavelength only changed ±0.2 nm around 963.8 nm, while the output power was 169 mW with less than 6% standard deviation. Such a tunable repetition rate is interesting for various metrology applications such as optical sampling by laser cavity tuning (OSCAT).

Collaboration


Dive into the Mario Mangold's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge