Bauke W. Tilma
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bauke W. Tilma.
Optics Express | 2014
Mario Mangold; C. A. Zaugg; Sandro M. Link; Matthias Golling; Bauke W. Tilma; Ursula Keller
The high-power semiconductor laser studied here is a modelocked integrated external-cavity surface emitting laser (MIXSEL), which combines the gain of vertical-external-cavity surface-emitting lasers (VECSELs) with the saturable absorber of a semiconductor saturable absorber mirror (SESAM) in a single semiconductor layer stack. The MIXSEL concept allows for stable and self-starting fundamental passive modelocking in a simple straight cavity and the average power scaling is based on the semiconductor disk laser concept. Previously record-high average output power from an optically pumped MIXSEL was demonstrated, however the long pulse duration of 17 ps prevented higher pulse repetition rates and many interesting applications such as supercontinuum generation and broadband frequency comb generation. With a novel MIXSEL structure, the first femtosecond operation was then demonstrated just recently. Here we show that such a MIXSEL can also support pulse repetition rate scaling from ≈5 GHz to >100 GHz with excellent beam quality and high average output power, by mechanically changing the cavity length of the linear straight cavity and the output coupler. Up to a pulse repetition rate of 15 GHz we obtained average output power >1 W and pulse durations <4 ps. Furthermore we have been able to demonstrate the highest pulse repetition rate from any fundamentally modelocked semiconductor disk laser with 101.2 GHz at an average output power of 127 mW and a pulse duration of 570 fs.
Optics Express | 2014
C. A. Zaugg; Alexander Klenner; Mario Mangold; Aline S. Mayer; Sandro M. Link; Florian Emaury; Matthias Golling; E. Gini; Clara J. Saraceno; Bauke W. Tilma; Ursula Keller
We present a 1.75-GHz self-referenceable frequency comb from a vertical external-cavity surface-emitting laser (VECSEL) passively modelocked with a semiconductor saturable absorber mirror (SESAM). The VECSEL delivers 231-fs pulses with an average power of 100 mW and is optimized for stable and reliable operation. The optical spectrum was centered around 1038 nm and nearly transform-limited with a full width half maximum (FWHM) bandwidth of 5.5 nm. The pulses were first amplified to an average power of 5.5 W using a backward-pumped Yb-doped double-clad large mode area (LMA) fiber and then compressed to 85 fs with 2.2 W of average power with a passive LMA fiber and transmission gratings. Subsequently, we launched the pulses into a highly nonlinear photonic crystal fiber (PCF) and generated a coherent octave-spanning supercontinuum (SC). We then detected the carrier-envelope offset (CEO) frequency (f(CEO)) beat note using a standard f-to-2f-interferometer. The f(CEO) exhibits a signal-to-noise ratio of 17 dB in a 100-kHz resolution bandwidth and a FWHM of ≈10 MHz. To our knowledge, this is the first report on the detection of the f(CEO) from a semiconductor laser, opening the door to fully stabilized compact frequency combs based on modelocked semiconductor disk lasers.
Optics Express | 2013
Mario Mangold; Valentin J. Wittwer; C. A. Zaugg; Sandro M. Link; Matthias Golling; Bauke W. Tilma; Ursula Keller
Novel surface-emitting optically pumped semiconductor lasers have demonstrated >1 W modelocked and >100 W continuous wave (cw) average output power. The modelocked integrated external-cavity surface emitting laser (MIXSEL) combines the gain of vertical-external-cavity surface-emitting lasers (VECSELs) with the saturable absorber of a semiconductor saturable absorber mirror (SESAM) in one single semiconductor structure. This unique concept allows for stable and self-starting passive modelocking in a simple straight cavity. With quantum-dot based absorbers, record-high average output power was demonstrated previously, however the pulse duration was limited to 17 ps so far. Here, we present the first femtosecond MIXSEL emitting pulses with a duration as short as 620 fs at 4.8 GHz repetition rate and 101 mW average output power. The novel MIXSEL structure relies on a single low temperature grown quantum-well saturable absorber with a low saturation fluence and fast recovery dynamics. A detailed characterization of the key modelocking parameters of the absorber and the challenges for absorber integration into the MIXSEL structure are discussed.
Optica | 2016
Dominik Waldburger; Sandro M. Link; Mario Mangold; Cesare G. E. Alfieri; E. Gini; Matthias Golling; Bauke W. Tilma; Ursula Keller
Optically pumped passively modelocked semiconductor disk lasers (SDLs) provide superior performance in average output power, a broad range of operation wavelengths, and reduced complexity. Here, we present record performance with high average power and pulse durations as short as 100 fs with a semiconductor saturable absorber mirror (SESAM) modelocked vertical external-cavity surface-emitting laser (VECSEL) at a center wavelength of 1034 nm. A comprehensive pulse characterization confirms fundamental modelocking with a close to transform-limited output pulse of 128 fs and with negatively chirped output pulses as short as 107 fs, which are externally compressed to 96 fs with a single path through a 2-mm-thick ZnSe plate. For the “96 fs result” the pulse repetition rate is 1.6 GHz, the average output power is 100 mW, and the pulse peak power is 560 W. The transform-limited optical spectrum could in principle support pulses as short as 65 fs with higher order dispersion compensation. We measured the most relevant spectral and nonlinear VECSEL and SESAM parameters and used them as input parameters for our pulse formation simulations. These simulations agree well with our experimental results and provide an outlook for further performance scaling of ultrafast SDL technology.
Optics Express | 2015
Sandro M. Link; Alexander Klenner; Mario Mangold; C. A. Zaugg; Matthias Golling; Bauke W. Tilma; Ursula Keller
In this paper we present the first semiconductor disk laser (SDL) emitting simultaneously two collinearly overlapping cross-polarized gigahertz modelocked pulse trains with different pulse repetition rates. Using only a simple photo detector and a microwave spectrum analyzer directly down-converts the frequency comb difference from the optical to the microwave frequency domain. With this setup, the relative carrier-envelope-offset (CEO) frequency can be accessed directly without an f-to2f interferometer. A very compact design is obtained using the modelocked integrated external-cavity surface emitting laser (MIXSEL) which is part of the family of optically pumped SDLs and similar to a vertical external cavity surface emitting laser (VECSEL) but with both gain and saturable absorber integrated into the same semiconductor wafer (i.e. MIXSEL chip). We then simply added an additional intracavity birefringent crystal inside the linear straight cavity between the output coupler and the MIXSEL chip which splits the cavity beam into two collinear but spatially separated cross-polarized beams on the MIXSEL chip. This results in two modelocked collinear and fully overlapping cross-polarized output beams with adjustable pulse repetition frequencies with excellent noise performance. We stabilized both pulse repetition rates of the dual comb MIXSEL.
IEEE Photonics Journal | 2014
Mario Mangold; Sandro M. Link; Alexander Klenner; C. A. Zaugg; Matthias Golling; Bauke W. Tilma; Ursula Keller
We present a timing jitter and amplitude noise characterization of a high-power mode-locked integrated external-cavity surface emitting laser (MIXSEL). In the MIXSEL, the semiconductor saturable absorber of a SESAM is integrated into the structure of a VECSEL to start and stabilize passive mode-locking. In comparison to previous noise characterization of SESAM-mode-locked VECSELs, this first noise characterization of a MIXSEL is performed at a much higher average output power. In a free-running operation, the laser generates 14.3-ps pulses at an average output power of 645 mW at a 2-GHz pulse repetition rate and an RMS amplitude noise of 0.15% [1 Hz, 10 MHz]. We measured an RMS timing jitter of 129 fs [100 Hz, 10 MHz], which represents the lowest value for a free-running passively mode-locked semiconductor disk laser to date. Additionally, we stabilized the pulse repetition rate with a piezo actuator to control the cavity length. With the laser generating 16.7-ps pulses at an average output power of 701 mW, the repetition frequency was phase-locked to a low-noise electronic reference using a feedback loop. In actively stabilized operation, the RMS timing jitter was reduced to less than 70 fs [1 Hz, 100 MHz]. In the 100-Hz to 10-MHz bandwidth, we report the lowest timing jitter measured from a passively mode-locked semiconductor disk laser to date with a value of 31 fs. These results show that the MIXSEL technology provides compact ultrafast laser sources combining high-power and low-noise performance similar to diode-pumped solid-state lasers, which enable world-record optical communication rates and low-noise frequency combs.
Optics Express | 2015
Mario Mangold; Matthias Golling; E. Gini; Bauke W. Tilma; Ursula Keller
Peak power scaling of semiconductor disk lasers is important for many applications, but their complex pulse formation mechanism requires a rigorous pulse characterization to confirm stable fundamental modelocking. Here we fully confirm sub-300-fs operation of Modelocked Integrated eXternal-cavity Surface Emitting Lasers (MIXSELs) with record high peak power at gigahertz pulse repetition rates. A strain-compensated InGaAs quantum well gain section enables an emission wavelength in the range of Yb-doped amplifiers at ≈1030 nm. We demonstrate the shortest pulses from a MIXSEL with a duration of 253 fs with 240 W of peak power, the highest peak power generated from any MIXSEL to date. This peak power performance is comparable to conventional SESAM-modelocked VECSELs for the first time. At a 10-GHz pulse repetition rate we still obtained 279-fs pulses with 310 mW of average output power, which is currently the highest output power of any femtosecond MIXSEL. Continuous tuning of the pulse repetition rate has been demonstrated with sub-400-fs pulse durations and >225 mW of average output power between 2.9 and 3.4 GHz. The strain-compensated MIXSEL chip allowed for more detailed parameter studies with regards to different heat sink temperatures, pump power, and epitaxial homogeneity of the MIXSEL chip for the first time. We discuss in detail, how the critical temperature balance between quantum well gain and quantum well absorber, the partially saturated absorber and a limited epitaxial growth quality influence the overall device efficiency.
IEEE Photonics Journal | 2013
Valentin J. Wittwer; R. van der Linden; Bauke W. Tilma; Bojan Resan; Kurt J. Weingarten; Thomas Südmeyer; Ursula Keller
We present noise measurements of a pulse train emitted from an actively stabilized semiconductor-saturable-absorber-mirror (SESAM) modelocked vertical external cavity surface emitting laser (VECSEL). The laser generated 6-ps pulses with 2-GHz pulse-repetition rate and 40-mW average output power. The repetition rate was phase locked to a reference source using a piezo actuator. The timing phase noise power spectral density of the laser output was detected with a highly linear photodiode and measured with a signal source analyzer. The resulting RMS timing jitter integrated over an offset frequency range from 1 Hz to 100 MHz gives a value of below 60 fs, lower than previous modelocked VECSELs and comparable with the noise performance of ion-doped solid-state lasers. The RMS amplitude noise was below 0.4% (1 Hz to 40 MHz) and not influenced by the timing phase stabilization.
Optics Express | 2012
C. A. Zaugg; Martin Hoffmann; W. P. Pallmann; Valentin J. Wittwer; Oliver D. Sieber; Mario Mangold; Matthias Golling; Kurt J. Weingarten; Bauke W. Tilma; Thomas Südmeyer; Ursula Keller
Ultrafast VECSELs are compact pulsed laser sources with more flexibility in the emission wavelength compared to diode-pumped solid-state lasers. Typically, the reduction of the pulse repetition rate is a straightforward method to increase both pulse energy and peak power. However, the relatively short carrier lifetime of semiconductor gain materials of a few nanoseconds sets a lower limit to the repetition rate of passively modelocked VECSELs. This fast gain recovery combined with low pulse repetition rates leads to the buildup of multiple pulses in the cavity. Therefore, we applied an active multipass approach with which demonstrate fundamental modelocking at a repetition rate of 253 MHz with 400 mW average output power in 11.3 ps pulses.
Optics Express | 2012
W. P. Pallmann; C. A. Zaugg; Mario Mangold; Valentin J. Wittwer; Holger Moench; Stephan Gronenborn; Michael Miller; Bauke W. Tilma; Thomas Südmeyer; Ursula Keller
Linear and nonlinear gain characterization of electrically pumped vertical external cavity surface emitting lasers (EP-VECSELs) is presented with spectrally resolved measurements of the gain and with gain saturation measurements of two EP-VECSEL samples with different field enhancement in the quantum-well gain layers. The spectral bandwidth, small-signal gain and saturation fluence of the devices are compared. Using the sample with the larger bandwidth, we have demonstrated the shortest pulses generated from a passively modelocked EP-VECSEL to date. With a low-saturation-fluence SESAM for passive modelocking we have achieved 9.5-ps pulses with 7.6 mW average output power at a repetition rate of 1.4 GHz. With a higher output coupler transmission the pulse duration was increased to 31 ps with an average output power of 13.6 mW. The pulses were chirped mainly due to the group delay dispersion (GDD) introduced by the intermediate DBR, which compensates the optical loss in the structure.