Mário N. Laço
University of Coimbra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mário N. Laço.
Journal of Biological Chemistry | 2007
Sokol V. Todi; Mário N. Laço; Brett J. Winborn; Sue M. Travis; Hsiang M. Wen; Henry L. Paulson
Ataxin-3, a deubiquitinating enzyme, is the disease protein in spinocerebellar ataxia type 3, one of many neurodegenerative disorders caused by polyglutamine expansion. Little is known about the cellular regulation of ataxin-3. This is an important issue, since growing evidence links disease protein context to pathogenesis in polyglutamine disorders. Expanded ataxin-3, for example, is more neurotoxic in fruit fly models when its active site cysteine is mutated (1). We therefore sought to determine the influence of ataxin-3 enzymatic activity on various cellular properties. Here we present evidence that the catalytic activity of ataxin-3 regulates its cellular turnover, ubiquitination, and subcellular distribution. Cellular protein levels of catalytically inactive ataxin-3 were much higher than those of active ataxin-3, in part reflecting slower degradation. In vitro studies revealed that inactive ataxin-3 was more slowly degraded by the proteasome and that this degradation occurred independent of ubiquitination. Slower degradation of inactive ataxin-3 correlated with reduced interaction with the proteasome shuttle protein, VCP/p97. Enzymatically active ataxin-3 also showed a greater tendency to concentrate in the nucleus, where it colocalized with the proteasome in subnuclear foci. Taken together, these and other findings suggest that the catalytic activity of this disease-linked deubiquitinating enzyme regulates several of its cellular properties, which in turn may influence disease pathogenesis.
Neurobiology of Disease | 2009
Sandra Aparecida de Almeida; Mário N. Laço; Teresa Cunha-Oliveira; Catarina R. Oliveira; A. Cristina Rego
3-Nitropropionic acid (3-NP) is an irreversible inhibitor of succinate dehydrogenase that has been used to explore the primary mechanisms of cell death associated with mitochondrial dysfunction and neurodegeneration in Huntingtons disease. In this study we investigated the ability of brain-derived neurotrophic factor (BDNF) to suppress mitochondrial-dependent cell death induced by 3-NP in primary cortical neurons. This neurotrophin prevented 3-NP-induced release of cytochrome c and Smac/Diablo, caspase-3-like activity and nuclear condensation/fragmentation. Furthermore, it greatly increased phosphorylation of Akt and MAPK, suggesting the involvement of these signalling pathways in BDNF neuroprotection. Interestingly, BDNF decreased the levels of the pro-apoptotic protein Bim in mitochondrial and total cell lysates through the activation of the MEK1/2 pathway. This effect was due to an increase in the degradation rates of Bim. Our data support an important role for BDNF, in protecting cortical neurons against apoptotic cell death caused by inhibition of mitochondrial complex II.
Mitochondrion | 2013
Ana C. Silva; Sandra Aparecida de Almeida; Mário N. Laço; Ana I. Duarte; Joana Domingues; Catarina R. Oliveira; Cristina Januário; A. Cristina Rego
Mitochondrial dysfunction has been implicated in Huntingtons disease (HD) pathogenesis. We analyzed the activity of mitochondrial complexes (Cx) I-IV, protein levels of selected Cx subunits and adenine nucleotides in platelet mitochondria from pre-symptomatic versus symptomatic HD human carriers and age-matched control individuals. Mitochondrial platelets exhibited reduced activity of citrate synthase in pre-symptomatic and Cx-I in pre-symptomatic and symptomatic HD carriers. Positive correlation between Cx activity and protein subunits was observed for Cx-I in symptomatic HD patients mitochondria. Moreover, AMP increased in mitochondria from pre-symptomatic HD carriers. Results highlight mitochondrial changes occurring before the onset of HD clinical symptoms.
Molecular Neurobiology | 2015
Luana Naia; I. Luísa Ferreira; Teresa Cunha-Oliveira; Ana I. Duarte; Márcio Ribeiro; Tatiana R. Rosenstock; Mário N. Laço; Maria J. Ribeiro; Catarina R. Oliveira; Frédéric Saudou; Sandrine Humbert; A. Cristina Rego
Huntington’s disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca2+ levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca2+ accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.
Biochimica et Biophysica Acta | 2012
Mário N. Laço; Catarina R. Oliveira; Henry L. Paulson; A. Cristina Rego
Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia type 3, is an inherited dominant autosomal neurodegenerative disorder. An expansion of Cytosine-Adenine-Guanine (CAG) repeats in the ATXN3 gene is translated as an expanded polyglutamine domain in the disease protein, ataxin-3. Selective neurodegeneration in MJD is evident in several subcortical brain regions including the cerebellum. Mitochondrial dysfunction has been proposed as a mechanism of neurodegeneration in polyglutamine disorders. In this study, we used different cell models and transgenic mice to assess the importance of mitochondria on cytotoxicity observed in MJD. Transiently transfected HEK cell lines with expanded (Q84) ataxin-3 exhibited a higher susceptibility to 3-nitropropionic acid (3-NP), an irreversible inhibitor of mitochondrial complex II. Increased susceptibility to 3-NP was also detected in stably transfected PC6-3 cells that inducibly express expanded (Q108) ataxin-3 in a tetracycline-regulated manner. Moreover, cerebellar granule cells from MJD transgenic mice were more sensitive to 3-NP inhibition than wild-type cerebellar neurons. PC6-3 (Q108) cells differentiated into a neuronal-like phenotype with nerve growth factor (NGF) exhibited a significant decrease in mitochondrial complex II activity. Mitochondria from MJD transgenic mouse model and lymphoblast cell lines derived from MJD patients also showed a trend toward reduced complex II activity. Our results suggest that mitochondrial complex II activity is moderately compromised in MJD, which may designate a common feature in polyglutamine toxicity.
Neurotoxicity Research | 2010
Sandra Aparecida de Almeida; Teresa Cunha-Oliveira; Mário N. Laço; Catarina R. Oliveira; A. Cristina Rego
Abstract3-Nitropropionic acid (3-NP), an inhibitor of mitochondrial complex II, leads to metabolic impairment and neurodegeneration. In this study, we investigated the roles of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the dysregulation of transcription factors and histone modifying enzymes induced by 3-NP in primary cortical neurons. BDNF prevented the 3-NP-induced decrease in cAMP response-element binding protein (CREB) phosphorylation and CREB-binding protein levels. Both NGF and BDNF counteracted the increase in the levels of histone H3 and H4 acetylations and reduced histone deacetylase (HDAC) activity induced by 3-NP. BDNF further led to hyperphosphorylation of HDAC2. Our results support an important role for neurotrophins, particularly BDNF, in preventing detrimental changes in transcription factors and histone acetylation states in cortical neurons that have been subjected to selective mitochondrial inhibition.
Annals of the New York Academy of Sciences | 2006
António Domingues; Teresa Oliveira; Mário N. Laço; Tice Macedo; Catarina R. Oliveira; A. Cristina Rego
Abstract: Repeated use of drugs of abuse, namely opiates, has been shown to affect glutamate‐releasing neurons. Moreover, blockade of N‐methyl‐D‐aspartate (NMDA) receptors (NMDAR) prevents cell death by apoptosis induced by morphine, a heroin metabolite. Thus, in this article we investigated the involvement of different NMDAR subunits in heroin cytotoxicity. Human embryonic kidney (HEK293) cells, which do not express native NMDAR, were transfected with NR1/NR2A or NR1/NR2B subunits. As a control, cells were transfected with NR1 alone, which does not form functional channels. Incubation with heroin for 24 h induced a dose‐dependent decrease in cell viability both in NR1‐transfected and nontransfected cells. The loss of membrane integrity induced by heroin was more evident in cells transfected with NR1/NR2B than in cells transfected with NR1 alone or NR1/NR2A. This decrease in cell viability was blocked by MK‐801, a selective and noncompetitive antagonist of NMDAR. Nevertheless, no significant changes in intracellular adenosine 5′‐triphosphate (ATP) were observed in cells treated with heroin. These data implicate NR2B‐composed NMDAR as important mediators of heroin neurotoxicity.
PLOS ONE | 2012
Mário N. Laço; Luísa Cortes; Sue M. Travis; Henry L. Paulson; A. Cristina Rego
Alterations in the ubiquitin-proteasome system (UPS) have been reported in several neurodegenerative disorders characterized by protein misfolding and aggregation, including the polylgutamine diseases. Machado-Joseph disease (MJD) or Spinocerebellar Ataxia type 3 is caused by a polyglutamine-encoding CAG expansion in the ATXN3 gene, which encodes a 42 kDa deubiquitinating enzyme (DUB), ataxin-3. We investigated ataxin-3 deubiquitinating activity and the functional relevance of ataxin-3 interactions with two proteins previously described to interact with ataxin-3, hHR23A and valosin-containing protein (VCP/p97). We confirmed ataxin-3 affinity for both hHR23A and VCP/p97. hHR23A and ataxin-3 were shown to co-localize in discrete nuclear foci, while VCP/p97 was primarily cytoplasmic. hHR23A and VCP/p97 recombinant proteins were added, separately or together, to normal and expanded ataxin-3 in in vitro deubiquitination assays to evaluate their influence on ataxin-3 activity. VCP/p97 was shown to be an activator specifically of wild-type ataxin-3, exhibiting no effect on expanded ataxin-3, In contrast, we observed no significant alterations in ataxin-3 enzyme kinetics or substrate preference in the presence of hHR23A alone or in combination with VCP. Based on our results we propose a model where ataxin-3 normally functions with its interactors to specify the cellular fate of ubiquitinated proteins.
Human Molecular Genetics | 2018
Lorena I. Petrella; João Castelhano; M. N. Ribeiro; José Sereno; Sónia I. Gonçalves; Mário N. Laço; Michael R. Hayden; A. Cristina Rego; Miguel Castelo-Branco
Huntingtons disease (HD) is a neurodegenerative disorder causing cognitive and motor impairments, evolving to death within 15-20 years after symptom onset. We previously established a mouse model with the entire human HD gene containing 128 CAG repeats (YAC128) which accurately recapitulates the natural history of the human disease. Defined time points in this natural history enable the understanding of longitudinal trajectories from the neurochemical and structural points of view using non-invasive high-resolution multi-modal imaging. Accordingly, we designed a longitudinal structural imaging (MRI and DTI) and spectroscopy (1H-MRS) study in YAC128, at 3, 6, 9 and 12 months of age, at 9.4 T. Structural analysis (MRI/DTI), confirmed that the striatum is the earliest affected brain region, but other regions were also identified through connectivity analysis (pre-frontal cortex, hippocampus, globus pallidus and thalamus), suggesting a striking homology with the human disease. Importantly, we found for the first time, a negative correlation between striatal and hippocampal changes only in YAC128. In fact, the striatum showed accelerated volumetric decay in HD, as opposed to the hippocampus. Neurochemical analysis of the HD striatum suggested early neurometabolic alterations in neurotransmission and metabolism, with a significant increase in striatal GABA levels, and specifically anticorrelated levels of N-acetyl aspartate and taurine, suggesting that the later is homeostatically adjusted for neuroprotection, as neural loss, indicated by the former, is progressing. These results provide novel insights into the natural history of HD and prove a valuable role for longitudinal multi-modal panels of structural and metabolite/neurotransmission in the YAC128 model.
Neurochemical Research | 2017
Carolina Noronha; Rita Perfeito; Mário N. Laço; Ullrich Wüllner; A. Cristina Rego
Neurodegenerative diseases are considered to be distinct clinical entities, although they share the formation of proteinaceous aggregates and several neuropathological mechanisms. Increasing evidence suggest a possible interaction between proteins that have been classically associated to distinct neurodegenerative diseases. Thus, common molecular and cellular pathways might explain similarities between disease phenotypes. Interestingly, the characteristic Parkinson’s disease (PD) phenotype linked to bradykinesia is also a clinical presentation of other neurodegenerative diseases. An example is Machado–Joseph disease (MJD), with some patients presenting parkinsonism and a positive response to levodopa (L-DOPA). Protein aggregates positive for α-synuclein (α-Syn), a protein associated with PD, in the substantia nigra of MJD models made us hypothesize a putative additive biological effect induced by expression of α-Syn and ataxin-3 (Atx3), the protein affected in MJD. Hence, in this study we analysed the influence of these two proteins (α-Syn and wild-type or mutant Atx3) on modified redox signaling, a pathological process potentially linked to both diseases, and also the impact of exposure to iron and rotenone in SH-SY5Y neuroblastoma cells. Our results show that both α-Syn and mutant Atx3 overexpression per se increased oxidation of dichlorodihydrofluorescein (DCFH2), and co-expression of these proteins exhibited additive effect on intracellular oxidation, with no correlation with apoptotic features. Mutant Atx3 and α-Syn also potentiated altered redox status induced by iron and rotenone, a hint to how these proteins might influence neuronal dysfunction under pro-oxidant conditions. We further show that overexpression of wild-type Atx3 decreased intracellular DCFH2 oxidation, possibly exerting a neuroprotective role.