Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario Ramírez is active.

Publication


Featured researches published by Mario Ramírez.


Plant Physiology | 2007

Phosphorus Stress in Common Bean: Root Transcript and Metabolic Responses

Georgina Hernández; Mario Ramírez; Oswaldo Valdés-López; Mesfin Tesfaye; Michelle A. Graham; Tomasz Czechowski; Armin Schlereth; Maren Wandrey; Alexander Erban; Foo Cheung; Hank Wu; Miguel Lara; Christopher D. Town; Joachim Kopka; Michael K. Udvardi; Carroll P. Vance

Phosphorus (P) is an essential element for plant growth. Crop production of common bean (Phaseolus vulgaris), the most important legume for human consumption, is often limited by low P in the soil. Functional genomics were used to investigate global gene expression and metabolic responses of bean plants grown under P-deficient and P-sufficient conditions. P-deficient plants showed enhanced root to shoot ratio accompanied by reduced leaf area and net photosynthesis rates. Transcript profiling was performed through hybridization of nylon filter arrays spotted with cDNAs of 2,212 unigenes from a P deficiency root cDNA library. A total of 126 genes, representing different functional categories, showed significant differential expression in response to P: 62% of these were induced in P-deficient roots. A set of 372 bean transcription factor (TF) genes, coding for proteins with Inter-Pro domains characteristic or diagnostic for TF, were identified from The Institute of Genomic Research/Dana Farber Cancer Institute Common Bean Gene Index. Using real-time reverse transcription-polymerase chain reaction analysis, 17 TF genes were differentially expressed in P-deficient roots; four TF genes, including MYB TFs, were induced. Nonbiased metabolite profiling was used to assess the degree to which changes in gene expression in P-deficient roots affect overall metabolism. Stress-related metabolites such as polyols accumulated in P-deficient roots as well as sugars, which are known to be essential for P stress gene induction. Candidate genes have been identified that may contribute to root adaptation to P deficiency and be useful for improvement of common bean.


Plant Physiology | 2005

Sequencing and Analysis of Common Bean ESTs. Building a Foundation for Functional Genomics

Mario Ramírez; Michelle A. Graham; Lourdes Blanco-López; Sonia Silvente; Arturo Medrano-Soto; Matthew W. Blair; Georgina Hernández; Carroll P. Vance; Miguel Lara

Although common bean (Phaseolus vulgaris) is the most important grain legume in the developing world for human consumption, few genomic resources exist for this species. The objectives of this research were to develop expressed sequence tag (EST) resources for common bean and assess nodule gene expression through high-density macroarrays. We sequenced a total of 21,026 ESTs derived from 5 different cDNA libraries, including nitrogen-fixing root nodules, phosphorus-deficient roots, developing pods, and leaves of the Mesoamerican genotype, Negro Jamapa 81. The fifth source of ESTs was a leaf cDNA library derived from the Andean genotype, G19833. Of the total high-quality sequences, 5,703 ESTs were classified as singletons, while 10,078 were assembled into 2,226 contigs producing a nonredundant set of 7,969 different transcripts. Sequences were grouped according to 4 main categories, metabolism (34%), cell cycle and plant development (11%), interaction with the environment (19%), and unknown function (36%), and further subdivided into 15 subcategories. Comparisons to other legume EST projects suggest that an entirely different repertoire of genes is expressed in common bean nodules. Phaseolus-specific contigs, gene families, and single nucleotide polymorphisms were also identified from the EST collection. Functional aspects of individual bean organs were reflected by the 20 contigs from each library composed of the most redundant ESTs. The abundance of transcripts corresponding to selected contigs was evaluated by RNA blots to determine whether gene expression determined by laboratory methods correlated with in silico expression. Evaluation of root nodule gene expression by macroarrays and RNA blots showed that genes related to nitrogen and carbon metabolism are integrated for ureide production. Resources developed in this project provide genetic and genomic tools for an international consortium devoted to bean improvement.


Plant Cell and Environment | 2008

Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots.

Oswaldo Valdés-López; Catalina Arenas-Huertero; Mario Ramírez; Lourdes Girard; Federico Sánchez; Carroll P. Vance; José Luis Reyes; Georgina Hernández

Phosphorus (P), an essential element for plants, is one of the most limiting nutrients for plant growth. A few transcription factor (TF) genes involved in P-starvation signalling have been characterized for Arabidopsis thaliana and rice. Crop production of common bean (Phaseolus vulgaris L.), the most important legume for human consumption, is often limited by low P in the soil. Despite its agronomic importance, nothing is known about transcriptional regulation in P-deficient bean plants. We functionally characterized the P-deficiency-induced MYB TF TC3604 (Dana Farber Cancer Institute, Common Bean Gene Index v.2.0), ortholog to AtPHR1 (PvPHR1). For its study, we applied RNAi technology in bean composite plants. PvPHR1 is a positive regulator of genes implicated in P transport, remobilization and homeostasis. Although there are no reports on the regulatory roles of microRNAs (miRNA) in bean, we demonstrated that PvmiR399 is an essential component of the PvPHR1 signalling pathway. The analysis of DICER-like1 (PvDCL1) silenced bean composite plants suppressed for accumulation of PvmiR399 and other miRNAs suggested that miR399 is a negative regulator of the ubiquitin E2 conjugase: PvPHO2 expression. Our results set the basis for understanding the signalling for P-starvation responses in common bean and may contribute to crop improvement.


Molecular Plant-microbe Interactions | 2008

Improvement of Drought Tolerance and Grain Yield in Common Bean by Overexpressing Trehalose-6-Phosphate Synthase in Rhizobia

Ramón Suárez; Arnoldo Wong; Mario Ramírez; Aarón Barraza; María del Carmen Orozco; Miguel A. Cevallos; Miguel Lara; Georgina Hernández; Gabriel Iturriaga

Improving stress tolerance and yield in crops are major goals for agriculture. Here, we show a new strategy to increase drought tolerance and yield in legumes by overexpressing trehalose-6-phosphate synthase in the symbiotic bacterium Rhizobium etli. Phaseolus vulgaris (common beans) plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene had more nodules with increased nitrogenase activity and higher biomass compared with plants inoculated with wild-type R. etli. In contrast, plants inoculated with an R. etli mutant in trehalose-6-phosphate synthase gene had fewer nodules and less nitrogenase activity and biomass. Three-week-old plants subjected to drought stress fully recovered whereas plants inoculated with a wild-type or mutant strain wilted and died. The yield of bean plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene and grown with constant irrigation increased more than 50%. Macroarray analysis of 7,200 expressed sequence tags from nodules of plants inoculated with the strain overexpressing trehalose-6-phosphate synthase gene revealed upregulation of genes involved in stress tolerance and carbon and nitrogen metabolism, suggesting a signaling mechanism for trehalose. Thus, trehalose metabolism in rhizobia is key for signaling plant growth, yield, and adaptation to abiotic stress, and its manipulation has a major agronomical impact on leguminous plants.


Plant Physiology | 2009

Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants.

Georgina Hernández; Oswaldo Valdés-López; Mario Ramírez; Nicolas Goffard; Georg F. Weiller; Rosaura Aparicio-Fabre; Sara Isabel Fuentes; Alexander Erban; Joachim Kopka; Michael K. Udvardi; Carroll P. Vance

Phosphorus (P) deficiency is widespread in regions where the common bean (Phaseolus vulgaris), the most important legume for human consumption, is produced, and it is perhaps the factor that most limits nitrogen fixation. Global gene expression and metabolome approaches were used to investigate the responses of nodules from common bean plants inoculated with Rhizobium tropici CIAT899 grown under P-deficient and P-sufficient conditions. P-deficient inoculated plants showed drastic reduction in nodulation and nitrogenase activity as determined by acetylene reduction assay. Nodule transcript profiling was performed through hybridization of nylon filter arrays spotted with cDNAs, approximately 4,000 unigene set, from the nodule and P-deficient root library. A total of 459 genes, representing different biological processes according to updated annotation using the UniProt Knowledgebase database, showed significant differential expression in response to P: 59% of these were induced in P-deficient nodules. The expression platform for transcription factor genes based in quantitative reverse transcriptase-polymerase chain reaction revealed that 37 transcription factor genes were differentially expressed in P-deficient nodules and only one gene was repressed. Data from nontargeted metabolic profiles indicated that amino acids and other nitrogen metabolites were decreased, while organic and polyhydroxy acids were accumulated, in P-deficient nodules. Bioinformatics analyses using MapMan and PathExpress software tools, customized to common bean, were utilized for the analysis of global changes in gene expression that affected overall metabolism. Glycolysis and glycerolipid metabolism, and starch and Suc metabolism, were identified among the pathways significantly induced or repressed in P-deficient nodules, respectively.


Functional Plant Biology | 2006

Identification of candidate phosphorus stress induced genes in Phaseolus vulgaris through clustering analysis across several plant species

Michelle A. Graham; Mario Ramírez; Oswaldo Valdés-López; Miguel Lara; Mesfin Tesfaye; Carroll P. Vance; Georgina Hernandez

Common bean (Phaseolus vulgaris L.) is the worlds most important grain legume for direct human consumption. However, the soils in which common bean predominate are frequently limited by the availability of phosphorus (P). Improving bean yield and quality requires an understanding of the genes controlling P acquisition and use, ultimately utilising these genes for crop improvement. Here we report an in silico approach for the identification of genes involved in adaptation of P. vulgaris and other legumes to P-deficiency. Some 22 groups of genes from four legume species and Arabidopsis thaliana, encoding diverse functions, were identified as statistically over-represented in EST contigs from P-stressed tissues. By combining bioinformatics analysis with available micro / macroarray technologies and clustering results across five species, we identified 52 P. vulgaris candidate genes belonging to 19 categories as induced by P-stress response. Transport-related, stress (defence and regulation) signal transduction genes are abundantly represented. Manipulating these genes through traditional breeding methodologies and / or biotechnology approaches may allow us to improve crop P-nutrition.


Plant Physiology | 2015

The Micro-RNA172c-APETALA2-1 Node as a Key Regulator of the Common Bean-Rhizobium etli Nitrogen Fixation Symbiosis

Bárbara Nova-Franco; Luis P. Íñiguez; Oswaldo Valdés-López; Xochitl Alvarado-Affantranger; Alfonso Leija; Sara Isabel Fuentes; Mario Ramírez; Sujay Paul; José Luis Reyes; Lourdes Girard; Georgina Hernández

A common bean microRNA, that targets a trancription factor, positively controls root development and symbiotic rhizobia infection and nodulation. Micro-RNAs are recognized as important posttranscriptional regulators in plants. The relevance of micro-RNAs as regulators of the legume-rhizobia nitrogen-fixing symbiosis is emerging. The objective of this work was to functionally characterize the role of micro-RNA172 (miR172) and its conserved target APETALA2 (AP2) transcription factor in the common bean (Phaseolus vulgaris)-Rhizobium etli symbiosis. Our expression analysis revealed that mature miR172c increased upon rhizobial infection and continued increasing during nodule development, reaching its maximum in mature nodules and decaying in senescent nodules. The expression of AP2-1 target showed a negative correlation with miR172c expression. A drastic decrease in miR172c and high AP2-1 mRNA levels were observed in ineffective nodules. Phenotypic analysis of composite bean plants with transgenic roots overexpressing miR172c or a mutated AP2-1 insensitive to miR172c cleavage demonstrated the pivotal regulatory role of the miR172 node in the common bean-rhizobia symbiosis. Increased miR172 resulted in improved root growth, increased rhizobial infection, increased expression of early nodulation and autoregulation of nodulation genes, and improved nodulation and nitrogen fixation. In addition, these plants showed decreased sensitivity to nitrate inhibition of nodulation. Through transcriptome analysis, we identified 114 common bean genes that coexpressed with AP2-1 and proposed these as being targets for transcriptional activation by AP2-1. Several of these genes are related to nodule senescence, and we propose that they have to be silenced, through miR172c-induced AP2-1 cleavage, in active mature nodules. Our work sets the basis for exploring the miR172-mediated improvement of symbiotic nitrogen fixation in common bean, the most important grain legume for human consumption.


Molecular Plant-microbe Interactions | 1999

Rhizobium etli genetically engineered for the heterologous expression of Vitreoscilla sp. hemoglobin : Effects on free-living and symbiosis

Mario Ramírez; Brenda Valderrama; Raúl Arredondo-Peter; Mario Soberón; Jaime Mora; Georgina Hernández

Oxygen concentration is an environmental signal that regulates nitrogen fixation in the Rhizobium-legume symbiosis. We investigated the effect of the heterologous expression of Vitreoscilla sp. hemoglobin (VHb), which is an oxygen-binding protein, in Rhizobium etli. The vhb gene and its native promoter were subcloned in the plasmid pMR4 and transformed into the R. etli strain CE3. Free-living cultures of engineered R. etli CE3 expressed the vhb gene, as shown by the CO-difference spectral and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses of cell extracts. The expression of vhb in free-living R. etli grown under most limiting oxygen concentrations resulted in an increase in respiratory activity, chemical energy content, and expression of the nitrogen-fixation gene nifHc. Bacteroids isolated from nodules of bean plants inoculated with the engineered R. etli CE3 expressed the vhb gene, as shown by RNA slot-blot analysis. Bean plants inoculated with the engineered strain exhibi...


International Journal of Molecular Sciences | 2013

Two Common Bean Genotypes with Contrasting Response to Phosphorus Deficiency Show Variations in the microRNA 399-Mediated PvPHO2 Regulation within the PvPHR1 Signaling Pathway

Mario Ramírez; Gerardo Flores-Pacheco; José Luis Reyes; Ana Luz Álvarez; Jean Jacques Drevon; Lourdes Girard; Georgina Hernández

Crop production of the important legume, the common bean (Phaseolus vulgaris), is often limited by low phosphorus (P) in the soil. The genotypes, BAT477 and DOR364, of the common bean have contrasting responses to P starvation. Plants from the BAT477 P deficiency tolerant genotype showed higher phosphate content and root biomass as compared to the DOR364 plants under P starvation. The PvPHR1 transcription factor-signaling pathway plays an essential role in the response to P starvation. PvPHO2, a negative regulator of this pathway, encodes an ubiquitin E2 conjugase that promotes degradation of P-responsive proteins and is the target gene of PvmiR399. PvPHO2 is downregulated in BAT477 plants under P deficiency, while such a response is not observed in P-starved DOR364 plants. Five putative PvmiR399 binding sites were identified in the 5′ UTR region in both genotypes. While four sites showed an identical DNA sequence, the fifth (binding site of PvPHO2 one) showed three base changes and higher complementarity scores in DOR364 as compared to BAT477. Modified 5′RACE experiments indicated that PvmiR399 binding and/or processing was affected in DOR364 P-starved plants. We propose that a less efficient cleavage of the PvPHO2 mRNA directed by PvmiR399 would result in a higher PvPHO2-mediated degradation of P-responsive proteins in the DOR364 genotype with decreased P deficiency tolerance.


Molecular Plant-microbe Interactions | 2002

Rhizobium etli mutant modulates carbon and nitrogen metabolism in Phaseolus vulgaris nodules

Sonia Silvente; Lourdes Blanco; Alberto Camas; José-Luis Ortega; Mario Ramírez; Miguel Lara-Flores

The aim of this study was to evaluate the biochemical events in root nodules which lead to increased yield when bean is inoculated with a Rhizobium etli mutant (CFN037) having increased respiratory capacity. CFN037-inoculated plants had 22% more nitrogen (N) than did wild-type (CE3)-inoculated plants. Root nodule enzymes involved in nodule carbon and nitrogen assimilation as well as in ureides and amides synthesis were assessed in plants inoculated with CFN037 and the CE3. Our results show that the xylem ureides content was lower while that of amino acids was higher in CFN037- compared with CE3-inoculated plants. Supporting these results, enzymes involved in ureide synthesis were reduced while activity of aspartate aminotransferase, glutamate synthase, sucrose synthase, and glucose-6-P dehydrogenase were increased in CFN037-induced nodules. Glutamate synthase and phosphoenolpyruvate carboxylase transcripts were detected early in the development of nodules induced by CFN037 compared with CE3. However, plants inoculated with strain CE3-vhb, which express the Vitreoscilla sp. hemoglobin and also displays increased respiratory capacity, did not have altered ureide transport in N2-fixing plants. The data suggest that inoculation with special selected mutant strains of R. etli can modulate nodule N assimilation and N transport compounds.

Collaboration


Dive into the Mario Ramírez's collaboration.

Top Co-Authors

Avatar

Georgina Hernández

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Luis P. Íñiguez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Oswaldo Valdés-López

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Lourdes Girard

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Sara Isabel Fuentes

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Lara

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Luis Reyes

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Ramón Suárez

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge