Mark A. Henesian
Lawrence Livermore National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark A. Henesian.
Applied Optics | 2007
C. A. Haynam; Paul J. Wegner; Jerome M. Auerbach; M. W. Bowers; S. Dixit; G. V. Erbert; G. M. Heestand; Mark A. Henesian; Mark Hermann; Kenneth S. Jancaitis; Kenneth R. Manes; Christopher D. Marshall; N. C. Mehta; Joseph A. Menapace; E. I. Moses; J. R. Murray; M. Nostrand; Charles D. Orth; R. Patterson; Richard A. Sacks; M. J. Shaw; M. Spaeth; S. Sutton; Wade H. Williams; C. Clay Widmayer; R. K. White; Steven T. Yang; B. Van Wonterghem
The National Ignition Facility (NIF) is the worlds largest laser system. It contains a 192 beam neodymium glass laser that is designed to deliver 1.8 MJ at 500 TW at 351 nm in order to achieve energy gain (ignition) in a deuterium-tritium nuclear fusion target. To meet this goal, laser design criteria include the ability to generate pulses of up to 1.8 MJ total energy, with peak power of 500 TW and temporal pulse shapes spanning 2 orders of magnitude at the third harmonic (351 nm or 3omega) of the laser wavelength. The focal-spot fluence distribution of these pulses is carefully controlled, through a combination of special optics in the 1omega (1053 nm) portion of the laser (continuous phase plates), smoothing by spectral dispersion, and the overlapping of multiple beams with orthogonal polarization (polarization smoothing). We report performance qualification tests of the first eight beams of the NIF laser. Measurements are reported at both 1omega and 3omega, both with and without focal-spot conditioning. When scaled to full 192 beam operation, these results demonstrate, to the best of our knowledge for the first time, that the NIF will meet its laser performance design criteria, and that the NIF can simultaneously meet the temporal pulse shaping, focal-spot conditioning, and peak power requirements for two candidate indirect drive ignition designs.
Applied Optics | 1993
S. Dixit; Ian M. Thomas; Bruce W. Woods; Aj Morgan; Mark A. Henesian; Paul J. Wegner; Howard T. Powell
We discuss the design and fabrication of 80-cm-diameter random phase plates for target-plane beam smoothing on the Nova laser. Random phase plates have been used in a variety of inertial confinement fusion target experiments, such as studying direct-drive hydrodynamic stability and producing spatially smooth x-ray backlighting sources. These phase plates were produced by using a novel sol-gel dip-coating technique developed by us. The sol-gel phase plates have a high optical damage threshold at the second- and third-harmonic wavelengths of the Nd:glass laser and have excellent optical performance.
Optical Engineering | 2004
M. Spaeth; Kenneth R. Manes; C. Widmayer; Wade H. Williams; Pamela K. Whitman; Mark A. Henesian; Irving F. Stowers; John Honig
With the first four of its eventual 192 beams now executing shots, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is already the worlds largest and most energetic laser. The optical system performance requirements that are in place for NIF are derived from the goals of the missions it is designed to serve. These missions include inertial confinement fusion (ICF) research and the study of matter at extreme energy densities and pressures. These mission requirements have led to a design strategy for achieving high quality focusable energy and power from the laser and to specifications on optics that are important for an ICF laser. The design of NIF utilizes a multipass architecture with a single large amplifier type that provides high gain, high extraction efficiency and high packing density. We have taken a systems engineering approach to the practical implementation of this design that specifies the wavefront parameters of individual optics in order to achieve the desired cumulative performance of the laser beamline. This presentation provides a detailed look at the causes and effects of performance degradation in large laser systems and how NIF has been designed to overcome these effects. We will also present results of spot size performance measurements that have validated many of the early design decisions that have been incorporated in the NIF laser architecture.
Optics Letters | 1985
Mark A. Henesian; C. D. Swift; J. R. Murray
We studied the growth from amplified spontaneous emission of stimulated Raman scattering in air using a 20-cm-diameter, linearly polarized, 1053-nm laser beam propagating over a 20-150-in air path. For 2.5-nsec square pulses we found about 1% conversion on the S(8) and S(10) rotational Raman lines of nitrogen at an intensity-length product of 12 TW/cm, which implies a small-signal gain coefficient of 2.5 cm/TW. For 1-nsec square pulses, 1% conversion requires an intensity-length product of about 16 TW/cm. The beam quality deteriorates severely above Raman threshold.
Fusion Science and Technology | 2011
A. Bayramian; S. Aceves; T. Anklam; K. Baker; E. Bliss; C. Boley; A. Bullington; John A. Caird; D. Chen; R. Deri; Mike Dunne; Alvin C. Erlandson; D. Flowers; Mark A. Henesian; Jeffery F. Latkowski; Kenneth R. Manes; William A. Molander; E. I. Moses; T. Piggott; S. Powers; S. Rana; S. Rodriguez; R. Sawicki; Kathleen I. Schaffers; L. Seppala; M. Spaeth; S. Sutton; S. Telford
Abstract This paper presents our conceptual design for laser drivers used in Laser Inertial Fusion Energy (LIFE) power plants. Although we have used only modest extensions of existing laser technology to ensure near-term feasibility, predicted performance meets or exceeds plant requirements: 2.2 MJ pulse energy produced by 384 beamlines at 16 Hz, with 18% wall-plug efficiency. High reliability and maintainability are achieved by mounting components in compact line-replaceable units that can be removed and replaced rapidly while other beamlines continue to operate, at up to ˜13% above normal energy, to compensate for neighboring beamlines that have failed. Statistical modeling predicts that laser-system availability can be greater than 99% provided that components meet reasonable mean-time-between-failure specifications.
Optical Materials Express | 2011
Alvin C. Erlandson; S. Aceves; A. Bayramian; Amber L. Bullington; Raymond J. Beach; C. D. Boley; John A. Caird; Robert J. Deri; A. M. Dunne; D. Flowers; Mark A. Henesian; Kenneth R. Manes; E. I. Moses; S. Rana; Kathleen I. Schaffers; M. Spaeth; C. J. Stolz; S. J. Telford
We present the results of performance modeling of diode-pumped solid state laser beamlines designed for use in Laser Inertial Fusion Energy (LIFE) power plants. Our modeling quantifies the efficiency increases that can be obtained by increasing peak diode power and reducing pump-pulse duration, to reduce decay losses. At the same efficiency, beamlines that use laser slabs of Yb:YAG or Yb:S-FAP require lower diode power than beamlines that use laser slabs of Nd:phosphate glass, since Yb:YAG and Yb:S-FAP have longer storage lifetimes. Beamlines using Yb:YAG attain their highest efficiency at a temperature of about 200K. Beamlines using Nd:phosphate glass or Yb:S-FAP attain high efficiency at or near room temperature.
Applied Optics | 1992
Paul J. Wegner; Mark A. Henesian; David Ralph Speck; C. Bibeau; R. B. Ehrlich; Curt W. Laumann; Janice K. Lawson; Timothy L. Weiland
To provide high-energy, high-power beams at short wavelengths for inertial-confinement fusion experiments, we routinely convert the 1.05-microm output of the Nova, Nd:phosphate-glass, laser system to its second- or third-harmonic wavelength. We describe the design and performance of the 3 x 3 arrays of potassium dihydrogen phosphate crystal plates used for type-II-type-II phase-matched harmonic conversion of the Nova 0.74-m diameter beams. We also describe an alternate type-I-type-II phasematching configuration that improves third-harmonic conversion efficiency. These arrays provide conversion of a Nova beam of up to 75% to the second harmonic and of up to 70% to the third harmonic.
Optics Letters | 1984
J. Goldhar; Mark A. Henesian
A transparent electrode concept using low-pressure ionized gas in the glow discharge regime is proposed for largeaperture electro-optic switch applications. A longitudinal Pockels cell and an electro-optically tuned second-harmonic-generation cell using KDP have successfully demonstrated the concept.
Optics Letters | 2011
Steven T. Yang; Mark A. Henesian; Timothy L. Weiland; James L. Vickers; Ronald L. Luthi; John P. Bielecki; Paul J. Wegner
Noncritically phase-matched (NCPM) fourth harmonic generation (FHG) of Nd:glass laser radiation in partially deuterated dihydrogen phosphate (KD*P) crystals has been demonstrated. At an Nd:glass laser wavelength of 1053.0 nm, NCPM FHG is achieved in 70% deuterated KD*P at a crystal temperature of 18.5±0.1 °C. Tuning the fundamental laser wavelength from 1052.9 to 1053.2 nm, FHG in KD*P is NCPM by changing the crystal temperature from 17.9 °C to 20.5 °C. When driven with 2.4 J of second harmonic radiation in a 3 ns flat-top pulse, corresponding to 1 GW/cm(2) 2ω drive intensity, 1.9 J of fourth harmonic radiation was generated in a 6 mm long KD*P crystal, yielding a second to fourth harmonic energy conversion efficiency of 79%.
Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion | 1999
Janice K. Lawson; Jerome M. Auerbach; R. Edward English; Mark A. Henesian; John T. Hunt; Richard A. Sacks; John B. Trenholme; Wade H. Williams; M. J. Shoup; J. H. Kelly; Christopher T. Cotton
The performance of the National Ignition Facility (NIF), especially in terms of laser focusability, will be determined by several key factors. One of these key factors is the optical specification of the thousands of large aperture optics that will comprise the 192 beamlines. We have previously reported on the importance of the specification of the power spectral density (PSD) on NIF performance. Recently, we have been studying the importance of long spatial wavelength phase errors on focusability. We have concluded that the preferred metric for determining the impact of these long spatial wavelength phase errors is the rms phase gradient. In this paper, we outline the overall approach to NIF optical specifications, detail the impact of the rms phase gradient on NIF focusability, discuss its trade-off with the PSD in determining the spot size, and review measurements of optics similar to those to be manufactured for NIF.