Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul J. Wegner is active.

Publication


Featured researches published by Paul J. Wegner.


Applied Optics | 2007

National Ignition Facility laser performance status

C. A. Haynam; Paul J. Wegner; Jerome M. Auerbach; M. W. Bowers; S. Dixit; G. V. Erbert; G. M. Heestand; Mark A. Henesian; Mark Hermann; Kenneth S. Jancaitis; Kenneth R. Manes; Christopher D. Marshall; N. C. Mehta; Joseph A. Menapace; E. I. Moses; J. R. Murray; M. Nostrand; Charles D. Orth; R. Patterson; Richard A. Sacks; M. J. Shaw; M. Spaeth; S. Sutton; Wade H. Williams; C. Clay Widmayer; R. K. White; Steven T. Yang; B. Van Wonterghem

The National Ignition Facility (NIF) is the worlds largest laser system. It contains a 192 beam neodymium glass laser that is designed to deliver 1.8 MJ at 500 TW at 351 nm in order to achieve energy gain (ignition) in a deuterium-tritium nuclear fusion target. To meet this goal, laser design criteria include the ability to generate pulses of up to 1.8 MJ total energy, with peak power of 500 TW and temporal pulse shapes spanning 2 orders of magnitude at the third harmonic (351 nm or 3omega) of the laser wavelength. The focal-spot fluence distribution of these pulses is carefully controlled, through a combination of special optics in the 1omega (1053 nm) portion of the laser (continuous phase plates), smoothing by spectral dispersion, and the overlapping of multiple beams with orthogonal polarization (polarization smoothing). We report performance qualification tests of the first eight beams of the NIF laser. Measurements are reported at both 1omega and 3omega, both with and without focal-spot conditioning. When scaled to full 192 beam operation, these results demonstrate, to the best of our knowledge for the first time, that the NIF will meet its laser performance design criteria, and that the NIF can simultaneously meet the temporal pulse shaping, focal-spot conditioning, and peak power requirements for two candidate indirect drive ignition designs.


Science | 2010

Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies

S. H. Glenzer; B. J. MacGowan; P. Michel; N. B. Meezan; L. J. Suter; S. Dixit; J. L. Kline; G. A. Kyrala; D. K. Bradley; D. A. Callahan; E. L. Dewald; L. Divol; E. G. Dzenitis; M. J. Edwards; Alex V. Hamza; C. A. Haynam; D. E. Hinkel; D. H. Kalantar; J. D. Kilkenny; O. L. Landen; J. D. Lindl; S. LePape; J. D. Moody; A. Nikroo; T. Parham; M. B. Schneider; R. P. J. Town; Paul J. Wegner; K. Widmann; Pamela K. Whitman

Ignition Set to Go One aim of the National Ignition Facility is to implode a capsule containing a deuterium-tritium fuel mix and initiate a fusion reaction. With 192 intense laser beams focused into a centimeter-scale cavity, a major challenge has been to create a symmetric implosion and the necessary temperatures within the cavity for ignition to be realized (see the Perspective by Norreys). Glenzer et al. (p. 1228, published online 28 January) now show that these conditions can be met, paving the way for the next step of igniting a fuel-filled capsule. Furthermore, Li et al. (p. 1231, published online 28 January) show how charged particles can be used to characterize and measure the conditions within the imploding capsule. The high energies and temperature realized can also be used to model astrophysical and other extreme energy processes in a laboratory settings. Laser-driven temperatures and implosion symmetry are close to the requirements for inertial-fusion ignition. Indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 megajoule. One hundred and ninety-two simultaneously fired laser beams heat ignition-emulate hohlraums to radiation temperatures of 3.3 million kelvin, compressing 1.8-millimeter-diameter capsules by the soft x-rays produced by the hohlraum. Self-generated plasma optics gratings on either end of the hohlraum tune the laser power distribution in the hohlraum, which produces a symmetric x-ray drive as inferred from the shape of the capsule self-emission. These experiments indicate that the conditions are suitable for compressing deuterium-tritium–filled capsules, with the goal of achieving burning fusion plasmas and energy gain in the laboratory.


Applied Optics | 1993

Random phase plates for beam smoothing on the Nova laser

S. Dixit; Ian M. Thomas; Bruce W. Woods; Aj Morgan; Mark A. Henesian; Paul J. Wegner; Howard T. Powell

We discuss the design and fabrication of 80-cm-diameter random phase plates for target-plane beam smoothing on the Nova laser. Random phase plates have been used in a variety of inertial confinement fusion target experiments, such as studying direct-drive hydrodynamic stability and producing spatially smooth x-ray backlighting sources. These phase plates were produced by using a novel sol-gel dip-coating technique developed by us. The sol-gel phase plates have a high optical damage threshold at the second- and third-harmonic wavelengths of the Nd:glass laser and have excellent optical performance.


XXXV Annual Symposium on Optical Materials for High Power Lasers: Boulder Damage Symposium | 2001

Growth of laser-initiated damage in fused silica at 351 nm

Mary A. Norton; Lawrence W. Hrubesh; Zhouling Wu; Eugene E. Donohue; Michael D. Feit; Mark R. Kozlowski; David Milam; Kurt P. Neeb; William A. Molander; Alexander M. Rubenchik; Walter D. Sell; Paul J. Wegner

The effective lifetime of optics in the UV is limited both by laser induced damage and the subsequent growth of laser initiated damage sites. We have measured the growth rate of laser induced damage in fused silica in both air and vacuum. The data shows exponential growth in the lateral size of the damage site with shot number above threshold fluence. The concurrent growth in depth follows a linear dependence with shot number. The size of the initial damage influences the threshold for growth; the morphology of the initial site depends strongly on the initiating fluence. We have found only a weak dependence on pulse length for growth rate. Low fluence conditioning in air may delay the onset of growth. Most of the work has been on bare substrates but the presence of a sol-gel AR coating has no significant effect.


Applied Optics | 2010

Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica

Steven T. Yang; Manyalibo J. Matthews; Selim Elhadj; Diane Cooke; Gabriel M. Guss; Vaughn G. Draggoo; Paul J. Wegner

Laser-induced growth of optical damage can limit component lifetime and, therefore, increase operating costs of large-aperture fusion-class laser systems. While far-infrared (IR) lasers have been used previously to treat laser damage on fused silica optics and render it benign, little is known about the effectiveness of less-absorbing mid-IR lasers for this purpose. In this study, we quantitatively compare the effectiveness and efficiency of mid-IR (4.6 μm) versus far-IR (10.6 μm) lasers in mitigating damage growth on fused silica surfaces. The nonlinear volumetric heating due to mid-IR laser absorption is analyzed by solving the heat equation numerically, taking into account the temperature-dependent absorption coefficient α(T) at λ=4.6 μm, while far-IR laser heating is well described by a linear analytic approximation to the laser-driven temperature rise. In both cases, the predicted results agree well with surface temperature measurements based on IR radiometry, as well as subsurface fictive temperature measurements based on confocal Raman microscopy. Damage mitigation efficiency is assessed using a figure of merit (FOM) relating the crack healing depth to laser power required, under minimally ablative conditions. Based on our FOM, we show that, for cracks up to at least 500 μm in depth, mitigation with a 4.6 μm mid-IR laser is more efficient than mitigation with a 10.6 μm far-IR laser. This conclusion is corroborated by direct application of each laser system to the mitigation of pulsed laser-induced damage possessing fractures up to 225 μm in depth.


Proceedings of SPIE | 2004

NIF final optics system: frequency conversion and beam conditioning

Paul J. Wegner; Jerome M. Auerbach; Thomas A. Biesiada; Sham N. Dixit; Janice K. Lawson; Joseph A. Menapace; Thomas Gene Parham; David W. Swift; Pamela K. Whitman; Wade H. Williams

Installation and commissioning of the first of forty-eight Final Optics Assemblies on the National Ignition Facility was completed this past year. This activity culminated in the delivery of first light to a target. The final optics design is described and selected results from first-article commissioning and performance tests are presented.


Laser Damage Symposium XLII: Annual Symposium on Optical Materials for High Power Lasers | 2010

An Improved Method of Mitigating Laser Induced Surface Damage Growth in Fused Silica Using a Rastered, Pulsed CO2 Laser

Isaac L. Bass; Gabriel M. Guss; Michael J. Nostrand; Paul J. Wegner

A new method of mitigating (arresting) the growth of large (>200 m diameter and depth) laser induced surface damage on fused silica has been developed that successfully addresses several issues encountered with our previously-reported5,6large site mitigation technique. As in the previous work, a tightly-focused 10.6 m CO2 laser spot is scanned over the damage site by galvanometer steering mirrors. In contrast to the previous work, the laser is pulsed instead of CW, with the pulse length and repetition frequency chosen to allow substantial cooling between pulses. This cooling has the important effect of reducing the heat-affected zone capable of supporting thermo-capillary flow from scale lengths on the order of the overall scan pattern to scale lengths on the order of the focused laser spot, thus preventing the formation of a raised rim around the final mitigation site and its consequent down-stream intensification. Other advantages of the new method include lower residual stresses, and improved damage threshold associated with reduced amounts of redeposited material. The raster patterns can be designed to produce specific shapes of the mitigation pit including cones and pyramids. Details of the new technique and its comparison with the previous technique will be presented.


Physics of Plasmas | 2013

Hohlraum energetics scaling to 520 TW on the National Ignition Facility

J. L. Kline; D. A. Callahan; S. H. Glenzer; N. B. Meezan; J. D. Moody; D. E. Hinkel; O. S. Jones; A. J. Mackinnon; R. Bennedetti; R. L. Berger; D. K. Bradley; E. L. Dewald; I. Bass; C. Bennett; M. W. Bowers; G. K. Brunton; J. Bude; S. C. Burkhart; A. Condor; J. M. Di Nicola; P. Di Nicola; S. N. Dixit; T. Doeppner; E. G. Dzenitis; G. V. Erbert; J. Folta; G. P. Grim; S. Glenn; Alex V. Hamza; S. W. Haan

Indirect drive experiments have now been carried out with laser powers and energies up to 520 TW and 1.9 MJ. These experiments show that the energy coupling to the target is nearly constant at 84% ± 3% over a wide range of laser parameters from 350 to 520 TW and 1.2 to 1.9 MJ. Experiments at 520 TW with depleted uranium hohlraums achieve radiation temperatures of ∼330 ± 4 eV, enough to drive capsules 20 μm thicker than the ignition point design to velocities near the ignition goal of 370 km/s. A series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations show the symmetry and drive are reproducible at the level of ±8.5% absolute and ±2% relative, respectively.


Proceedings of SPIE | 2004

NIF Pockels cell and frequency conversion crystals

Ruth A. Hawley-Fedder; Paul Geraghty; Susan N. Locke; Michael S. McBurney; Michael J. Runkel; Tayyab I. Suratwala; Samuel L. Thompson; Paul J. Wegner; Pamela K. Whitman

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. Each beam line requires three different large-aperture optics made from single crystal potassium dihydrogen phosphate (KDP). KDP is used in the plasma electrode pockels cell (PEPC) and frequency doubling crystals, while deuterated KDP (DKDP) crystals are used for frequency tripling. Methods for reproducible growth of single crystals of KDP that meet all material requirements have been developed that enable us to meet the optics demands of the NIF. Once material properties are met, fabrication of high aspect ratio single crystal optics (42 × 42 × 1 cm) to meet laser performance specifications is the next challenge. More than 20% of the required final crystal optics have been fabricated and meet the stringent requirements of the NIF system. This manuscript summarizes the challenges and successes in the production of these large single-crystal optics.


Applied Optics | 2001

Modeling of frequency doubling and tripling with measured crystal spatial refractive-index nonuniformities.

Jerome M. Auerbach; Paul J. Wegner; Scott A. Couture; David Eimerl; Robin L. Hibbard; David Milam; Mary A. Norton; Pamela K. Whitman; Lloyd A. Hackel

Efficient frequency doubling and tripling are critical to the successful operation of inertial confinement fusion laser systems such as the National Ignition Facility currently being constructed at the Lawrence Livermore National Laboratory and the Omega laser at the Laboratory for Laser Energetics. High-frequency conversion efficiency is strongly dependent on attainment of the phase-matching condition. In an ideal converter crystal, one can obtain the phase-matching condition throughout by angle tuning or temperature tuning of the crystal as a whole. In real crystals, imperfections in the crystal structure prohibit the attainment of phase matching at all locations in the crystal. We have modeled frequency doubling and tripling with a quantitative measure of this departure from phase matching in real crystals. This measure is obtained from interferometry of KDP and KD*P crystals at two orthogonal light polarizations.

Collaboration


Dive into the Paul J. Wegner's collaboration.

Top Co-Authors

Avatar

Mark A. Henesian

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Dixit

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. A. Haynam

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jerome M. Auerbach

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kenneth R. Manes

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Timothy L. Weiland

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. J. MacGowan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. W. Bowers

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Pamela K. Whitman

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. Clay Widmayer

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge