Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. Ragan is active.

Publication


Featured researches published by Mark A. Ragan.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The complete genome of the crenarchaeon Sulfolobus solfataricus P2

Qunxin She; Rama K. Singh; Fabrice Confalonieri; Yvan Zivanovic; Ghislaine Allard; Mariana J. Awayez; Christina C.-Y. Chan-Weiher; Ib Groth Clausen; Bruce A. Curtis; Anick De Moors; G. Erauso; Cynthia Fletcher; Paul M. K. Gordon; Ineke Heikamp-de Jong; Alex C. Jeffries; Catherine Kozera; Nadine Medina; Xu Peng; Hoa Phan Thi-Ngoc; Peter Redder; Margaret E. Schenk; Cynthia Theriault; Niels Tolstrup; Robert L. Charlebois; W. Ford Doolittle; Michel Duguet; Terry Gaasterland; Roger A. Garrett; Mark A. Ragan; Christoph W. Sensen

The genome of the crenarchaeon Sulfolobus solfataricus P2 contains 2,992,245 bp on a single chromosome and encodes 2,977 proteins and many RNAs. One-third of the encoded proteins have no detectable homologs in other sequenced genomes. Moreover, 40% appear to be archaeal-specific, and only 12% and 2.3% are shared exclusively with bacteria and eukarya, respectively. The genome shows a high level of plasticity with 200 diverse insertion sequence elements, many putative nonautonomous mobile elements, and evidence of integrase-mediated insertion events. There are also long clusters of regularly spaced tandem repeats. Different transfer systems are used for the uptake of inorganic and organic solutes, and a wealth of intracellular and extracellular proteases, sugar, and sulfur metabolizing enzymes are encoded, as well as enzymes of the central metabolic pathways and motility proteins. The major metabolic electron carrier is not NADH as in bacteria and eukarya but probably ferredoxin. The essential components required for DNA replication, DNA repair and recombination, the cell cycle, transcriptional initiation and translation, but not DNA folding, show a strong eukaryal character with many archaeal-specific features. The results illustrate major differences between crenarchaea and euryarchaea, especially for their DNA replication mechanism and cell cycle processes and their translational apparatus.


Molecular Phylogenetics and Evolution | 1992

Phylogenetic inference based on matrix representation of trees

Mark A. Ragan

Rooted phylogenetic trees can be represented as matrices in which the rows correspond to termini, and columns correspond to internal nodes (elements of the n-tree). Parsimony analysis of such a matrix will fully recover the topology of the original tree. The maximum size of the represented matrix depends only on the number of termini in the tree; for a tree derived from molecular sequences, the represented matrix may be orders of magnitude smaller than the original data matrix. Representations of multiple trees (which may or may not have identical termini) can readily be combined into a single matrix; columns of discrete-character-state data can be added and, if desired, weighted differentially. Parsimony analysis of the resulting composite matrix yields a hybrid supertree which typically provides greater resolution than conventional consensus trees. Use of this method is illustrated with examples involving multiple tRNA genes in organelles and multiple protein-coding genes in eukaryotes.


Nature Methods | 2010

Visualization of image data from cells to organisms

Thomas Walter; David W. Shattuck; Richard Baldock; Mark E Bastin; Anne E. Carpenter; Suzanne Duce; Jan Ellenberg; Adam Fraser; Nicholas A. Hamilton; Steve Pieper; Mark A. Ragan; Jurgen E Schneider; Pavel Tomancak; Jean-Karim Hériché

Advances in imaging techniques and high-throughput technologies are providing scientists with unprecedented possibilities to visualize internal structures of cells, organs and organisms and to collect systematic image data characterizing genes and proteins on a large scale. To make the best use of these increasingly complex and large image data resources, the scientific community must be provided with methods to query, analyze and crosslink these resources to give an intuitive visual representation of the data. This review gives an overview of existing methods and tools for this purpose and highlights some of their limitations and challenges.


PLOS Genetics | 2008

Dynamics of Genome Rearrangement in Bacterial Populations

Aaron E. Darling; István Miklós; Mark A. Ragan

Genome structure variation has profound impacts on phenotype in organisms ranging from microbes to humans, yet little is known about how natural selection acts on genome arrangement. Pathogenic bacteria such as Yersinia pestis, which causes bubonic and pneumonic plague, often exhibit a high degree of genomic rearrangement. The recent availability of several Yersinia genomes offers an unprecedented opportunity to study the evolution of genome structure and arrangement. We introduce a set of statistical methods to study patterns of rearrangement in circular chromosomes and apply them to the Yersinia. We constructed a multiple alignment of eight Yersinia genomes using Mauve software to identify 78 conserved segments that are internally free from genome rearrangement. Based on the alignment, we applied Bayesian statistical methods to infer the phylogenetic inversion history of Yersinia. The sampling of genome arrangement reconstructions contains seven parsimonious tree topologies, each having different histories of 79 inversions. Topologies with a greater number of inversions also exist, but were sampled less frequently. The inversion phylogenies agree with results suggested by SNP patterns. We then analyzed reconstructed inversion histories to identify patterns of rearrangement. We confirm an over-representation of “symmetric inversions”—inversions with endpoints that are equally distant from the origin of chromosomal replication. Ancestral genome arrangements demonstrate moderate preference for replichore balance in Yersinia. We found that all inversions are shorter than expected under a neutral model, whereas inversions acting within a single replichore are much shorter than expected. We also found evidence for a canonical configuration of the origin and terminus of replication. Finally, breakpoint reuse analysis reveals that inversions with endpoints proximal to the origin of DNA replication are nearly three times more frequent. Our findings represent the first characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes.


Current Opinion in Genetics & Development | 2001

Detection of lateral gene transfer among microbial genomes.

Mark A. Ragan

An increasingly comprehensive assessment is being developed of the extent and potential significance of lateral gene transfer among microbial genomes. Genomic sequences can be identified as being of putatively lateral origin by their unexpected phyletic distribution, atypical sequence composition, differential presence or absence in closely related genomes, or incongruent phylogenetic trees. These complementary approaches sometimes yield inconsistent results. Not only more data but also quantitative models and simulations are needed urgently.


Genome Research | 2009

Evolution of gene function and regulatory control after whole-genome duplication: Comparative analyses in vertebrates

Karin S. Kassahn; Vinh Toan Dang; Simon J. Wilkins; Andrew C. Perkins; Mark A. Ragan

The significance of whole-genome duplications (WGD) for vertebrate evolution remains controversial, in part because the mechanisms by which WGD contributed to functional evolution or speciation are still incompletely characterized. Fish genomes provide an ideal context in which to examine the consequences of WGD, because the teleost lineage experienced an additional WGD soon after divergence from tetrapods and because five teleost genomes are available for comparative analysis. Here we present an integrated approach to characterize these post-duplication genomes based on genome-scale synteny, phylogenetic, temporal, and spatial gene expression and on protein sequence data. A minimum of 3%-4% of protein-coding loci have been retained in two copies in each of the five fish genomes, and many of these duplicates are key developmental genes that function as transcription factors or signaling molecules. Almost all duplicate gene pairs we examined have diverged in spatial and/or temporal expression during embryogenesis. A quarter of duplicate pairs have diverged in function via the acquisition of novel protein domains or via changes in the subcellular localization of their encoded proteins. We compared the spatial expression and protein domain architecture of zebrafish WGD-duplicates to those of their single mouse ortholog and found many examples supporting a model of neofunctionalization. WGD-duplicates have acquired novel protein domains more often than have single-copy genes. Post-WGD changes at the gene regulatory level were more common than changes at the protein level. We conclude that the most significant consequence of WGD for vertebrate evolution has been to enable more-specialized regulatory control of development via the acquisition of novel spatiotemporal expression domains. We find limited evidence that reciprocal gene loss led to reproductive isolation and speciation in this lineage.


Fems Microbiology Reviews | 2011

Lateral genetic transfer and the construction of genetic exchange communities

Elizabeth Skippington; Mark A. Ragan

Lateral genetic transfer (LGT) is a major source of phenotypic innovation among bacteria. Determinants for antibiotic resistance and other adaptive traits can spread rapidly, particularly by conjugative plasmids, but also phages and natural transformation. Each successive step from the uptake of foreign DNA, its genetic recombination and regulatory integration, to its establishment in the host population presents differential barriers and opportunities. The emergence of successive multidrug-resistant strains of Staphylococcus aureus illustrates the ongoing role of LGT in the combinatorial assembly of pathogens. The dynamic interplay among hosts, vectors, DNA elements, combinations of genetic determinants and environments constructs communities of genetic exchange. These relations can be abstracted as a graph, within which an exchange community might correspond to a path, transitively closed set, clique or near-clique. We provide a set-based definition, and review the features of actual genetic exchange communities (GECs), adopting first a knowledge-driven approach based on literature, and then a synoptic data-centric bioinformatic approach. GECs are diverse, but share some common features. Differential opportunity and barriers to lateral genetic transfer create bacterial communities of exchange.


Journal of Bacteriology | 2002

Inferring Genome Trees by Using a Filter To Eliminate Phylogenetically Discordant Sequences and a Distance Matrix Based on Mean Normalized BLASTP Scores

G.D.Paul Clarke; Robert G. Beiko; Mark A. Ragan; Robert L. Charlebois

Darwins paradigm holds that the diversity of present-day organisms has arisen via a process of genetic descent with modification, as on a bifurcating tree. Evidence is accumulating that genes are sometimes transferred not along lineages but rather across lineages. To the extent that this is so, Darwins paradigm can apply only imperfectly to genomes, potentially complicating or perhaps undermining attempts to reconstruct historical relationships among genomes (i.e., a genome tree). Whether most genes in a genome have arisen via treelike (vertical) descent or by lateral transfer across lineages can be tested if enough complete genome sequences are used. We define a phylogenetically discordant sequence (PDS) as an open reading frame (ORF) that exhibits patterns of similarity relationships statistically distinguishable from those of most other ORFs in the same genome. PDSs represent between 6.0 and 16.8% (mean, 10.8%) of the analyzable ORFs in the genomes of 28 bacteria, eight archaea, and one eukaryote (Saccharomyces cerevisiae). In this study we developed and assessed a distance-based approach, based on mean pairwise sequence similarity, for generating genome trees. Exclusion of PDSs improved bootstrap support for basal nodes but altered few topological features, indicating that there is little systematic bias among PDSs. Many but not all features of the genome tree from which PDSs were excluded are consistent with the 16S rRNA tree.


BMC Evolutionary Biology | 2012

The mammalian PYHIN gene family: Phylogeny, evolution and expression

Jasmyn A. Cridland; Eva Z. Curley; Michelle N. Wykes; Kate Schroder; Matthew J. Sweet; Tara L. Roberts; Mark A. Ragan; Karin S. Kassahn; Katryn J. Stacey

BackgroundProteins of the mammalian PYHIN (IFI200/HIN-200) family are involved in defence against infection through recognition of foreign DNA. The family member absent in melanoma 2 (AIM2) binds cytosolic DNA via its HIN domain and initiates inflammasome formation via its pyrin domain. AIM2 lies within a cluster of related genes, many of which are uncharacterised in mouse. To better understand the evolution, orthology and function of these genes, we have documented the range of PYHIN genes present in representative mammalian species, and undertaken phylogenetic and expression analyses.ResultsNo PYHIN genes are evident in non-mammals or monotremes, with a single member found in each of three marsupial genomes. Placental mammals show variable family expansions, from one gene in cow to four in human and 14 in mouse. A single HIN domain appears to have evolved in the common ancestor of marsupials and placental mammals, and duplicated to give rise to three distinct forms (HIN-A, -B and -C) in the placental mammal ancestor. Phylogenetic analyses showed that AIM2 HIN-C and pyrin domains clearly diverge from the rest of the family, and it is the only PYHIN protein with orthology across many species. Interestingly, although AIM2 is important in defence against some bacteria and viruses in mice, AIM2 is a pseudogene in cow, sheep, llama, dolphin, dog and elephant. The other 13 mouse genes have arisen by duplication and rearrangement within the lineage, which has allowed some diversification in expression patterns.ConclusionsThe role of AIM2 in forming the inflammasome is relatively well understood, but molecular interactions of other PYHIN proteins involved in defence against foreign DNA remain to be defined. The non-AIM2 PYHIN protein sequences are very distinct from AIM2, suggesting they vary in effector mechanism in response to foreign DNA, and may bind different DNA structures. The PYHIN family has highly varied gene composition between mammalian species due to lineage-specific duplication and loss, which probably indicates different adaptations for fighting infectious disease. Non-genomic DNA can indicate infection, or a mutagenic threat. We hypothesise that defence of the genome against endogenous retroelements has been an additional evolutionary driver for PYHIN proteins.


Journal of Experimental Marine Biology and Ecology | 1978

Quantitative studies on brown algal phenols. II. Seasonal variation in polyphenol content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus (L.)

Mark A. Ragan; Arne Jensen

The content of extractable polyphenols in the brown algae Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus (L.) was measured at ≈28-day intervals for one year. Colorimetric methods based on the Folin-Denis, Brentamine, and vanillin-H2SO4 reactions were used to estimate relative contents of polyphenols, and these values were converted to absolute contents using the gravimetric method introduced earlier. Relatively little error was introduced by variations in the qualitative composition of the extracted polyphloroglucinols. There appeared to be a significant temporal correlation between polyphenol content and the reproductive state of the algae. The content of polyphenols in A. nodosum was at a minimum (≈9–10% of dry matter) during the period of maximum fruit body shedding (late May), and reached a maximum (≈12–14% of dry matter) during the ‘winter season’. In F. vesiculosus, the minimum (≈8–10% of dry matter) was one to two months later, just before the period of maximum fertility, and thereafter rose to a maximum (≈11–13% of dry matter) during the period of sterility. These results furthermore suggest that the bulk of the polyphenols are not readily accessible as reserve components, and indicate that modifications may be needed in the ‘chemical defense’ and ‘waste product’ hypotheses concerning the significance of brown algal polyphenols.

Collaboration


Dive into the Mark A. Ragan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa J. Davis

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolyn J. Bird

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge