Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa J. Davis is active.

Publication


Featured researches published by Melissa J. Davis.


Journal of The American Society of Nephrology | 2004

Identifying the Molecular Phenotype of Renal Progenitor Cells

Grant A. Challen; Gemma Martinez; Melissa J. Davis; Darrin Taylor; Mark L Crowe; Rohan D. Teasdale; Sean M. Grimmond; Melissa H. Little

Although many of the molecular interactions in kidney development are now well understood, the molecules involved in the specification of the metanephric mesenchyme from surrounding intermediate mesoderm and, hence, the formation of the renal progenitor population are poorly characterized. In this study, cDNA microarrays were used to identify genes enriched in the murine embryonic day 10.5 (E10.5) uninduced metanephric mesenchyme, the renal progenitor population, in comparison with more rostral derivatives of the intermediate mesoderm. Microarray data were analyzed using R statistical software to determine accurately genes differentially expressed between these populations. Microarray outliers were biologically verified, and the spatial expression pattern of these genes at E10.5 and subsequent stages of early kidney development was determined by RNA in situ hybridization. This approach identified 21 genes preferentially expressed by the E10.5 metanephric mesenchyme, including Ewing sarcoma homolog, 14-3-3 theta, retinoic acid receptor-alpha, stearoyl-CoA desaturase 2, CD24, and cadherin-11, that may be important in formation of renal progenitor cells. Cell surface proteins such as CD24 and cadherin-11 that were strongly and specifically expressed in the uninduced metanephric mesenchyme and mark the renal progenitor population may prove useful in the purification of renal progenitor cells by FACS. These findings may assist in the isolation and characterization of potential renal stem cells for use in cellular therapies for kidney disease.


Nucleic Acids Research | 2006

LOCATE: a mouse protein subcellular localization database

J. Lynn Fink; Rajith N. Aturaliya; Melissa J. Davis; Fasheng Zhang; Kelly Hanson; Melvena S. Teasdale; Chikatoshi Kai; Jun Kawai; Piero Carninci; Yoshihide Hayashizaki; Rohan D. Teasdale

We present here LOCATE, a curated, web-accessible database that houses data describing the membrane organization and subcellular localization of proteins from the FANTOM3 Isoform Protein Sequence set. Membrane organization is predicted by the high-throughput, computational pipeline MemO. The subcellular locations of selected proteins from this set were determined by a high-throughput, immunofluorescence-based assay and by manually reviewing >1700 peer-reviewed publications. LOCATE represents the first effort to catalogue the experimentally verified subcellular location and membrane organization of mammalian proteins using a high-throughput approach and provides localization data for ∼40% of the mouse proteome. It is available at .


Genome Medicine | 2012

Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets

Piyush B. Madhamshettiwar; Stefan Maetschke; Melissa J. Davis; Antonio Reverter; Mark A. Ragan

BackgroundAltered networks of gene regulation underlie many complex conditions, including cancer. Inferring gene regulatory networks from high-throughput microarray expression data is a fundamental but challenging task in computational systems biology and its translation to genomic medicine. Although diverse computational and statistical approaches have been brought to bear on the gene regulatory network inference problem, their relative strengths and disadvantages remain poorly understood, largely because comparative analyses usually consider only small subsets of methods, use only synthetic data, and/or fail to adopt a common measure of inference quality.MethodsWe report a comprehensive comparative evaluation of nine state-of-the art gene regulatory network inference methods encompassing the main algorithmic approaches (mutual information, correlation, partial correlation, random forests, support vector machines) using 38 simulated datasets and empirical serous papillary ovarian adenocarcinoma expression-microarray data. We then apply the best-performing method to infer normal and cancer networks. We assess the druggability of the proteins encoded by our predicted target genes using the CancerResource and PharmGKB webtools and databases.ResultsWe observe large differences in the accuracy with which these methods predict the underlying gene regulatory network depending on features of the data, network size, topology, experiment type, and parameter settings. Applying the best-performing method (the supervised method SIRENE) to the serous papillary ovarian adenocarcinoma dataset, we infer and rank regulatory interactions, some previously reported and others novel. For selected novel interactions we propose testable mechanistic models linking gene regulation to cancer. Using network analysis and visualization, we uncover cross-regulation of angiogenesis-specific genes through three key transcription factors in normal and cancer conditions. Druggabilty analysis of proteins encoded by the 10 highest-confidence target genes, and by 15 genes with differential regulation in normal and cancer conditions, reveals 75% to be potential drug targets.ConclusionsOur study represents a concrete application of gene regulatory network inference to ovarian cancer, demonstrating the complete cycle of computational systems biology research, from genome-scale data analysis via network inference, evaluation of methods, to the generation of novel testable hypotheses, their prioritization for experimental validation, and discovery of potential drug targets.


Developmental Cell | 2012

Structure-based Reassessment of the Caveolin Signaling Model: Do Caveolae Regulate Signaling Through Caveolin-Protein Interactions?

Brett M. Collins; Melissa J. Davis; John F. Hancock; Robert G. Parton

Caveolin proteins drive formation of caveolae, specialized cell-surface microdomains that influence cell signaling. Signaling proteins are proposed to use conserved caveolin-binding motifs (CBMs) to associate with caveolae via the caveolin scaffolding domain (CSD). However, structural and bioinformatic analyses argue against such direct physical interactions: in the majority of signaling proteins, the CBM is buried and inaccessible. Putative CBMs do not form a common structure for caveolin recognition, are not enriched among caveolin-binding proteins, and are even more common in yeast, which lack caveolae. We propose that CBM/CSD-dependent interactions are unlikely to mediate caveolar signaling, and the basis for signaling effects should therefore be reassessed.


Biodata Mining | 2012

Visualising associations between paired ‘omics’ data sets

Ignacio González; Kim-Anh Lê Cao; Melissa J. Davis; Sébastien Déjean

BackgroundEach omics platform is now able to generate a large amount of data. Genomics, proteomics, metabolomics, interactomics are compiled at an ever increasing pace and now form a core part of the fundamental systems biology framework. Recently, several integrative approaches have been proposed to extract meaningful information. However, these approaches lack of visualisation outputs to fully unravel the complex associations between different biological entities.ResultsThe multivariate statistical approaches ‘regularized Canonical Correlation Analysis’ and ‘sparse Partial Least Squares regression’ were recently developed to integrate two types of highly dimensional ‘omics’ data and to select relevant information. Using the results of these methods, we propose to revisit few graphical outputs to better understand the relationships between two ‘omics’ data and to better visualise the correlation structure between the different biological entities. These graphical outputs include Correlation Circle plots, Relevance Networks and Clustered Image Maps. We demonstrate the usefulness of such graphical outputs on several biological data sets and further assess their biological relevance using gene ontology analysis.ConclusionsSuch graphical outputs are undoubtedly useful to aid the interpretation of these promising integrative analysis tools and will certainly help in addressing fundamental biological questions and understanding systems as a whole.AvailabilityThe graphical tools described in this paper are implemented in the freely available R package mixOmics and in its associated web application.


Briefings in Bioinformatics | 2014

Supervised, semi-supervised and unsupervised inference of gene regulatory networks

Stefan Maetschke; Piyush B. Madhamshettiwar; Melissa J. Davis; Mark A. Ragan

Inference of gene regulatory network from expression data is a challenging task. Many methods have been developed to this purpose but a comprehensive evaluation that covers unsupervised, semi-supervised and supervised methods, and provides guidelines for their practical application, is lacking. We performed an extensive evaluation of inference methods on simulated and experimental expression data. The results reveal low prediction accuracies for unsupervised techniques with the notable exception of the Z-SCORE method on knockout data. In all other cases, the supervised approach achieved the highest accuracies and even in a semi-supervised setting with small numbers of only positive samples, outperformed the unsupervised techniques.


Molecular Ecology | 2013

Annotated genes and nonannotated genomes: cross‐species use of Gene Ontology in ecology and evolution research

Craig R. Primmer; Spiros Papakostas; Erica H. Leder; Melissa J. Davis; Mark A. Ragan

Recent advances in molecular technologies have opened up unprecedented opportunities for molecular ecologists to better understand the molecular basis of traits of ecological and evolutionary importance in almost any organism. Nevertheless, reliable and systematic inference of functionally relevant information from these masses of data remains challenging. The aim of this review is to highlight how the Gene Ontology (GO) database can be of use in resolving this challenge. The GO provides a largely species‐neutral source of information on the molecular function, biological role and cellular location of tens of thousands of gene products. As it is designed to be species‐neutral, the GO is well suited for cross‐species use, meaning that, functional annotation derived from model organisms can be transferred to inferred orthologues in newly sequenced species. In other words, the GO can provide gene annotation information for species with nonannotated genomes. In this review, we describe the GO database, how functional information is linked with genes/gene products in model organisms, and how molecular ecologists can utilize this information to annotate their own data. Then, we outline various applications of GO for enhancing the understanding of molecular basis of traits in ecologically relevant species. We also highlight potential pitfalls, provide step‐by‐step recommendations for conducting a sound study in nonmodel organisms, suggest avenues for future research and outline a strategy for maximizing the benefits of a more ecological and evolutionary genomics‐oriented ontology by ensuring its compatibility with the GO.


BMC Systems Biology | 2009

Protein-protein interaction as a predictor of subcellular location

Chang Jin Shin; Simon Wong; Melissa J. Davis; Mark A. Ragan

BackgroundMany biological processes are mediated by dynamic interactions between and among proteins. In order to interact, two proteins must co-occur spatially and temporally. As protein-protein interactions (PPIs) and subcellular location (SCL) are discovered via separate empirical approaches, PPI and SCL annotations are independent and might complement each other in helping us to understand the role of individual proteins in cellular networks. We expect reliable PPI annotations to show that proteins interacting in vivo are co-located in the same cellular compartment. Our goal here is to evaluate the potential of using PPI annotation in determining SCL of proteins in human, mouse, fly and yeast, and to identify and quantify the factors that contribute to this complementarity.ResultsUsing publicly available data, we evaluate the hypothesis that interacting proteins must be co-located within the same subcellular compartment. Based on a large, manually curated PPI dataset, we demonstrate that a substantial proportion of interacting proteins are in fact co-located. We develop an approach to predict the SCL of a protein based on the SCL of its interaction partners, given sufficient confidence in the interaction itself. The frequency of false positive PPIs can be reduced by use of six lines of supporting evidence, three based on type of recorded evidence (empirical approach, multiplicity of databases, and multiplicity of literature citations) and three based on type of biological evidence (inferred biological process, domain-domain interactions, and orthology relationships), with biological evidence more-effective than recorded evidence. Our approach performs better than four existing prediction methods in identifying the SCL of membrane proteins, and as well as or better for soluble proteins.ConclusionUnderstanding cellular systems requires knowledge of the SCL of interacting proteins. We show how PPI data can be used more effectively to yield reliable SCL predictions for both soluble and membrane proteins. Scope exists for further improvement in our understanding of cellular function through consideration of the biological context of molecular interactions.


Molecular Endocrinology | 2013

Research Resource: Nuclear Receptors as Transcriptome: Discriminant and Prognostic Value in Breast Cancer

George E. O. Muscat; Natalie A. Eriksson; Karen Byth; Sherene Loi; Dinny Graham; Shalini Jindal; Melissa J. Davis; Colin Clyne; John W. Funder; Evan R. Simpson; Mark A. Ragan; Elizabeth Kuczek; Peter J. Fuller; Wayne D. Tilley; Peter J. Leedman; Christine L. Clarke

To identify biologically relevant groupings or clusters of nuclear receptors (NR) that are associated with breast neoplasia, with potentially diagnostic, discriminant or prognostic value, we quantitated mRNA expression levels of all 48 members of the human NR superfamily by TaqMan low-density array analysis in 116 curated breast tissue samples, including pre- and postmenopausal normal breast and both ERα(+) and ERα(-) tumor tissue. In addition, we have determined NR levels in independent cohorts of tamoxifen-treated ERα(+) and ERα(-) tissue samples. There were differences in relative NR mRNA expression between neoplastic and normal breast, and between ER(+) and ER(-) tumors. First, there is overexpression of the NUR77 subgroup and EAR2 in neoplastic breast. Second, we identify a signature of five NR (ERα, EAR2, NUR77, TRα, and RARγ) that classifies breast samples with more than 97% cross-validated accuracy into normal or cancer classes. Third, we find a novel negative association between five NR (TRβ, NUR77, RORγ, COUP-TFII, and LRH1) and histological grade. Finally, four NR (COUP-TFII, TRβ, PPARγ, and MR) are significant predictors of metastasis-free survival in tamoxifen-treated breast cancers, independent of ER expression. The present study highlights the discriminant and prognostic value of NR in breast cancer; identifies novel, clinically relevant, NR signatures; and highlights NR signaling pathways with potential roles in breast cancer pathophysiology and as new therapeutic targets.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Sleeping Beauty mutagenesis in a mouse medulloblastoma model defines networks that discriminate between human molecular subgroups

Laura A. Genovesi; Ching Ging Ng; Melissa J. Davis; Marc Remke; Michael D. Taylor; David J. Adams; Alistair G. Rust; Jerrold M. Ward; Kenneth H. Ban; Nancy A. Jenkins; Neal G. Copeland; Brandon J. Wainwright

Significance Medulloblastoma is a common malignant pediatric brain tumor. Gene expression data have indicated that the tumors fall into four molecular subgroups, “Wnt,” “Hedgehog,” “group 3,” and “group 4.” With the exception of the Hedgehog subgroup, few functional data exist defining key molecular pathways driving tumor growth. Using a transposon mutagenesis approach, we identified genes that functionally cooperate with Hedgehog signalling to promote tumorigenesis in a Ptch1 mouse model of medulloblastoma. Surprisingly, the genes we identified were able to accurately define all four human molecular subtypes, not just Hedgehog, when used to interrogate published expression data. Thus, we have functionally defined key regulatory networks that illustrate both the differences and commonalities between tumor subgroups indicating a number of therapeutic strategies. The Sleeping Beauty (SB) transposon mutagenesis screen is a powerful tool to facilitate the discovery of cancer genes that drive tumorigenesis in mouse models. In this study, we sought to identify genes that functionally cooperate with sonic hedgehog signaling to initiate medulloblastoma (MB), a tumor of the cerebellum. By combining SB mutagenesis with Patched1 heterozygous mice (Ptch1lacZ/+), we observed an increased frequency of MB and decreased tumor-free survival compared with Ptch1lacZ/+ controls. From an analysis of 85 tumors, we identified 77 common insertion sites that map to 56 genes potentially driving increased tumorigenesis. The common insertion site genes identified in the mutagenesis screen were mapped to human orthologs, which were used to select probes and corresponding expression data from an independent set of previously described human MB samples, and surprisingly were capable of accurately clustering known molecular subgroups of MB, thereby defining common regulatory networks underlying all forms of MB irrespective of subgroup. We performed a network analysis to discover the likely mechanisms of action of subnetworks and used an in vivo model to confirm a role for a highly ranked candidate gene, Nfia, in promoting MB formation. Our analysis implicates candidate cancer genes in the deregulation of apoptosis and translational elongation, and reveals a strong signature of transcriptional regulation that will have broad impact on expression programs in MB. These networks provide functional insights into the complex biology of human MB and identify potential avenues for intervention common to all clinical subgroups.

Collaboration


Dive into the Melissa J. Davis's collaboration.

Top Co-Authors

Avatar

Mark A. Ragan

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soroor Hediyeh-Zadeh

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Erik W. Thompson

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Fasheng Zhang

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge