Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark C. Clampin is active.

Publication


Featured researches published by Mark C. Clampin.


The Astrophysical Journal | 1998

The On-Orbit Performance of the Space Telescope Imaging Spectrograph

Randy A. Kimble; Bruce E. Woodgate; Charles W. Bowers; S. B. Kraemer; Mary Elizabeth Kaiser; T. R. Gull; S. R. Heap; Anthony C. Danks; A. Boggess; Richard F. Green; J. B. Hutchings; Edward B. Jenkins; Charles L. Joseph; J. L. Linsky; Stephen P. Maran; H. W. Moos; Fred L. Roesler; J. G. Timothy; Donna E. Weistrop; J. F. Grady; J. J. Loiacono; L. W. Brown; Mark D. Brumfield; Lee D. Feinberg; M. N. Isaacs; Carolyn A. Krebs; V. L. Krueger; R. W. Melcher; F. J. Rebar; H. D. Vitagliano

The Space Telescope Imaging Spectrograph (STIS) was successfully installed into the Hubble Space Telescope (HST) in 1997 February, during the second HST servicing mission, STS-82. STIS is a versatile spectrograph, covering the 115-1000 nm wavelength range in a variety of spectroscopic and imaging modes that take advantage of the angular resolution, unobstructed wavelength coverage, and dark sky offered by the HST. In the months since launch, a number of performance tests and calibrations have been carried out and are continuing. These tests demonstrate that the instrument is performing very well. We present here a synopsis of the results to date.


The Astrophysical Journal | 2003

Advanced Camera for Surveys Photometry of the Cluster RDCS 1252.9?2927: The Color-Magnitude Relation at z = 1.24

John P. Blakeslee; Marijn Franx; Marc Postman; P. Rosati; Brad P. Holden; G. D. Illingworth; Holland C. Ford; N. J. G. Cross; Caryl Gronwall; N. Benítez; R. J. Bouwens; T. J. Broadhurst; Mark C. Clampin; R. Demarco; David A. Golimowski; George F. Hartig; Leopoldo Infante; Andre R. Martel; G. K. Miley; Felipe Menanteau; Gerhardt R. Meurer; Marco Sirianni; Richard L. White

We investigate the color-magnitude (CM) relation of galaxies in the distant X-ray selected cluster RDCS 1252.9‐2927 at z = 1.24 using images obtained with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescopein the F775W and F850LP bandpasses. We select galaxies based on morphological classifications extending about 3.5 mag down the galaxy lumi nosity function, augmented by spectroscopic membership information. At the core of the cluster is an extensive early-type galaxy population surrounding a central pair of galaxies that show signs of dynamical interaction. The early-type population defines a tight sequence in the CM diagram, with an intrinsic scatter in observed (i775-z850) of 0.029 ± 0.007 mag based on 52 galaxies, or 0.024 ± 0.008 mag for ∼ 30 ellipticals. Simulations using the latest stellar popul ation models indicate an age


Astrophysical Journal Supplement Series | 2004

FAINT GALAXIES IN DEEP ADVANCED CAMERA FOR SURVEYS OBSERVATIONS

N. Benítez; Holland C. Ford; R. J. Bouwens; Felipe Menanteau; John P. Blakeslee; Caryl Gronwall; G. D. Illingworth; Gerhardt R. Meurer; T. J. Broadhurst; Mark C. Clampin; Marijn Franx; George F. Hartig; D. Magee; Marco Sirianni; D. R. Ardila; Frank Bartko; Robert A. Brown; Christopher J. Burrows; E. S. Cheng; N. J. G. Cross; Paul D. Feldman; David A. Golimowski; L. Infante; Randy A. Kimble; John E. Krist; Michael P. Lesser; Z. Levay; Andre R. Martel; G. K. Miley; Marc Postman

We present the analysis of the faint galaxy population in the Advanced Camera for Surveys (ACS) Early Release Observation fields VV 29 (UGC 10214) and NGC 4676. Here we attempt to thoroughly consider all aspects relevant for faint galaxy counting and photometry, developing methods which are based on public software and that are easily reproducible by other astronomers. Using simulations we determine the best SExtractor parameters for the detection of faint galaxies in deep HST observations, paying special attention to the issue of deblending, which significantly affects the normalization and shape of the number count distribution. We confirm, as claimed by Bernstein, Freedman and Madore (2002), that Kron-like magnitudes, such as the ones generated by SExtractor, can miss more than half of the light of faint galaxies, what dramatically affects the slope of the number counts. We present catalogs for the VV 29 and NGC 4676 fields with photometry in the g,V and I bands. We also show that combining the bayesian software BPZ with superb ACS data and new spectral templates enables us to estimate reliable photometric redshifts for a significant fraction of galaxies with as few as three filters. After correcting for selection effects, we measure slopes of 0.32+- 0.01 for 22 25.5 can be well approximated in all our filters by a passive luminosity evolution model based on the COMBO-17 luminosity function (\alpha=-1.5), with a strong merging rate following the prescription of Glazebrook et al. (1994), \phi^*\propto (1+Qz), with Q=4.We present the analysis of the faint galaxy population in the Advanced Camera for Surveys (ACS) Early Release Observation fields VV 29 (UGC 10214) and NGC 4676. These observations cover a total area of 26.3 arcmin 2 and have depths close to that of the Hubble Deep Fields in the deepest part of the VV 29 image, with 10 � detection limits for point sources of 27.8, 27.6, and 27.2 AB magnitudes in the g F475W , VF606W ,a ndIF814W bands, respectively. Measuring the faint galaxy number count distribution is a difficult task, with different groups arriving at widely varying results even on the same data set. Here we attempt to thoroughly consider all aspects relevant for faint galaxy counting and photometry, developing methods that are based on public software and that are easily reproducible by other astronomers. Using simulations we determine the best SExtractor parameters for the detection of faint galaxies in deep Hubble Space Telescope observations, paying special attention to the issue of deblending, which significantly affects the normalization and shape of the number count distribution. We confirm, as claimed by Bernstein, Freedman, & Madore, that Kron-like magnitudes, such as the ones generated by SExtractor, can miss more than half of the light offaint galaxies, what dramatically affects the slope of the number counts. We show how to correct for this effect, which depends sensitively not only on the characteristics of the observations, but also on the choice of SExtractor parameters. We present catalogs for the VV 29 and NGC 4676 fields with photometry in the F475W, F606W, and F814W bands. We also show that combining the Bayesian software BPZ with superb ACS data and new spectral templates enables us to estimate reliable photometric redshifts for a significant fraction of galaxies with as few as three filters. After correcting for selection effects, we measure slopes of 0:32 � 0:01for 22 25:5 can be well approximated in all our filters by a passive luminosity evolution model based on the COMBO-17 luminosity function (� ¼� 1:5), with a strong merging rate following the prescription of


The Astronomical Journal | 2003

Hubble Space Telescope ACS Coronagraphic Imaging of the Circumstellar Disk around HD 141569A

Mark C. Clampin; John E. Krist; D. R. Ardila; David A. Golimowski; George F. Hartig; Holland C. Ford; G. D. Illingworth; Frank Bartko; N. Benítez; John P. Blakeslee; R. J. Bouwens; T. J. Broadhurst; Robert A. Brown; Christopher J. Burrows; E. S. Cheng; N. J. G. Cross; Paul D. Feldman; Marijn Franx; Caryl Gronwall; L. Infante; R. A. Kimble; Michael P. Lesser; Andre R. Martel; Felipe Menanteau; Gerhardt R. Meurer; G. K. Miley; Marc Postman; P. Rosati; Marco Sirianni; W. B. Sparks

Multicolor coronagraphic images of the circumstellar disk around HD 141569A have been obtained with the Hubble Space Telescope Advanced Camera for Surveys. The B, V, and I images show that the disks previously described multiple-ring structure is actually a continuous distribution of dust with a tightly wound spiral structure. Extending from the disk are two, more open spiral arms, one of which appears to reach the nearby binary star HD 141569BC. Diffuse dust is seen up to 1200 AU from HD 141569A. Although planets may exist in the inner region of the disk, tidal interaction with HD 141569BC seems more likely to be the cause of these phenomena. The disk appears redder than the star (B-V = 0.21 and V-I = 0.25), and its color is spatially uniform. A scattering asymmetry factor of g = 0.25–0.35 is derived. The azimuthal density distribution is asymmetric, varying by a factor of ~3 at some radii.


The Astrophysical Journal | 1998

The Resolved Stellar Population of the Poststarburst Galaxy NGC 1569

Laura Greggio; M. Tosi; Mark C. Clampin; Guido De Marchi; Claus Leitherer; Antonella Nota; Marco Sirianni

We present Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC2) photometry of the resolved stellar population in the poststarburst galaxy NGC 1569. The color-magnitude diagram (CMD) derived in the F439W and F555W photometric bands contains ~2800 stars with a photometric error of ≤0.2 mag down to mF439, mF555 26 and is complete for mF555 23. Adopting the literature-distance modulus and reddening, our CMD samples stars more massive than ~4 M☉, allowing us to study the star formation (SF) history over the last ~0.15 Gyr. The data are interpreted using theoretical simulations based on stellar evolutionary models. The synthetic diagrams include photometric errors and incompleteness factors. Testing various sets of tracks, we find that the ability of the models to reproduce the observed features in the CMD is strictly related to the shape of the blue loops of the sequences with masses around 5 M☉. The field of NGC 1569 experienced a global SF burst of 0.1 Gyr duration, ending ~5-10 Myr ago. During the burst, the SF rate was approximately constant, and, if quiescent periods occurred, they lasted less than ~10 Myr. The level of the SF rate was very high; for a single-slope initial mass function (IMF) ranging from 0.1 to 120 M☉, we find values of 3, 1, and 0.5 M☉ yr-1 for α = 3, 2.6, and 2.35 (Salpeter), respectively. When scaled for the surveyed area, these rates are approximately 100 times larger than found in the most active dwarf irregulars in the Local Group. The data are consistent with a Salpeter IMF, though our best models indicate slightly steeper exponents. We discuss the implications of our results in the general context of the evolution of dwarf galaxies.


The Astrophysical Journal | 1999

Hubble Space Telescope Space Telescope Imaging Spectrograph Coronagraphic Imaging of the Herbig Ae Star AB Aurigae

C. A. Grady; Bruce E. Woodgate; Frederick C. Bruhweiler; A. Boggess; Philip C. Plait; Don J. Lindler; Mark C. Clampin; Paul Kalas

We present the first broadband, coronagraphic Hubble Space Telescope images of the bright, optically visible, isolated Herbig Ae star AB Aurigae. The Space Telescope Imaging Spectrograph (STIS) images reveal extended circumstellar nebulosity (r ≈ 1300 AU) covering the region of the millimeter continuum and CO disk. The structure is observed in the disk on spatial scales down to 01 (14 AU) and exhibits a north-south asymmetry. A comparison of the STIS data with scattering models for flared disks or disks + envelopes suggests that the disk inclination is i ≤ 45° from the plane of the sky.


The Astrophysical Journal | 2003

STAR FORMATION AT z ~ 6: i-DROPOUTS IN THE ADVANCED CAMERA FOR SURVEYS GUARANTEED TIME OBSERVATION FIELDS

R. J. Bouwens; G. D. Illingworth; P. Rosati; C. Lidman; T. J. Broadhurst; Marijn Franx; Holland C. Ford; D. Magee; N. Benítez; John P. Blakeslee; Gerhardt R. Meurer; Mark C. Clampin; George F. Hartig; D. R. Ardila; Frank Bartko; Robert A. Brown; Christopher J. Burrows; E. S. Cheng; N. J. G. Cross; Paul D. Feldman; David A. Golimowski; Caryl Gronwall; Leopoldo Infante; Randy A. Kimble; J. E. Krist; Michael P. Lesser; Andre R. Martel; Felipe Menanteau; G. K. Miley; Marc Postman

Using an i - z dropout criterion, we determine the space density of z ~ 6 galaxies from two deep ACS GTO fields with deep optical-IR imaging. A total of 23 objects are found over 46 arcmin2, or ~0.5 ± 0.1 objects arcmin-2 down to zAB ~ 27.3 (6 σ), or a completeness-corrected ~0.5 ± 0.2 objects arcmin-2 down to zAB ~ 26.5 (including one probable z ~ 6 active galactic nucleus). Combining deep ISAAC data for our RDCS 1252-2927 field (JAB ~ 25.7 and Ks,AB ~ 25.0; 5 σ) and NICMOS data for the Hubble Deep Field-North (J110,AB and H160,AB ~ 27.3, 5 σ), we verify that these dropouts have relatively flat spectral slopes, as one would expect for star-forming objects at z ~ 6. Compared with the average-color (β = -1.3) U-dropout in the Steidel et al. z ~ 3 sample, i-dropouts in our sample range in luminosity from ~1.5L* (zAB ~ 25.6) to ~0.3L* (zAB ~ 27.3) with the exception of one very bright candidate at z850,AB ~ 24.2. The half-light radii vary from 009 to 021, or 0.5 kpc to 1.3 kpc. We derive the z ~ 6 rest-frame UV luminosity density (or star formation rate density) by using three different procedures. All three procedures use simulations based on a slightly lower redshift (z ~ 5) V606-dropout sample from Chandra Deep Field-South ACS images. First, we make a direct comparison of our findings with a no-evolution projection of this V-dropout sample, allowing us to automatically correct for the light lost at faint magnitudes or lower surface brightnesses. We find 23% ± 25% more i-dropouts than we predict, consistent with no strong evolution over this redshift range. Adopting previous results to z ~ 5, this works out to a mere 20% ± 29% drop in the luminosity density from z ~ 3 to z ~ 6. Second, we use the same V-dropout simulations to derive a detailed selection function for our i-dropout sample and compute the UV-luminosity density [(7.2 ± 2.5) × 1025 ergs s-1 Hz-1 Mpc-3 down to zAB ~ 27]. We find a 39% ± 21% drop over the same redshift range (z ~ 3-6), consistent with the first estimate. This is our preferred value and suggests a star formation rate of 0.0090 ± 0.0031 M☉ yr-1 Mpc-3 to zAB ~ 27, or ~0.036 ± 0.012 M☉ yr-1 Mpc-3 by extrapolating the luminosity function to the faint limit, assuming α = -1.6. Third, we follow a very similar procedure, except that we assume no incompleteness, and find a rest-frame continuum luminosity that is ~2-3 times lower than our other two determinations. This final estimate is to be taken as a lower limit and is important if there are modest changes in the colors or surface brightnesses from z ~ 5 to z ~ 6 (the other estimates assume no large changes in the intrinsic selectability of objects). We note that all three estimates are well within the canonical range of luminosity densities necessary for reionization of the universe at this epoch by star-forming galaxies.


The Astrophysical Journal | 2000

The Low End of the Initial Mass Function in Young Large Magellanic Cloud Clusters. I. The Case of R136

Marco Sirianni; Antonella Nota; Claus Leitherer; Guido De Marchi; Mark C. Clampin

We report the result of a study in which we have used very deep broadband V and I Wide Field Planetary Camera 2 images of the R136 cluster in the Large Magellanic Cloud from the Hubble Space Telescope archive to sample the luminosity function below the detection limit of 2.8 M☉ previously reached. In these new deeper images, we detect stars down to a limiting magnitude of mF555W = 24.7 (1 mag deeper than previous works) and identify a population of red stars evenly distributed in the surrounding of the R136 cluster. A comparison of our color-magnitude diagram with recently computed evolutionary tracks indicates that these red objects are pre-main-sequence stars in the mass range 0.6-3 M☉. We construct the initial mass function (IMF) in the 1.35-6.5 M☉ range and find that, after correcting for incompleteness, the IMF shows a definite flattening below 2 M☉. We discuss the implications of this result for the R136 cluster and for our understanding of starburst galaxy formation and evolution in general.


The Astrophysical Journal | 1997

Dust around Main-Sequence Stars: Nature or Nurture by the Interstellar Medium?

Pawel Artymowicz; Mark C. Clampin

Dust from the interstellar medium (ISM) can collide with and destroy particles in the circumstellar dust disks around main-sequence stars (Vega/β Pic stars). Two current theories tying the occurrence of the Vega/β Pic phenomenon to the erosive influence of the ISM are critically reconsidered here. Using the local standard of rest frame, we find little evidence for a correlated motion (streaming) of prominent disk systems, which one theory suggests would result from a passage about 107 yr ago of these stars, but not the control A-type stars, through the nearby Lupus-Centaurus interstellar cloud complex. Moreover, the prototype system of β Pic could not have retained dust produced in such a passage for much longer than 104 yr. We show theoretically that the ISM sandblasting of disks has minor importance for the structure and evolution of circumstellar disks, except perhaps in their outskirts (usually >400 AU from the stars), where under favorable conditions it may cause asymmetries in observed brightness and color. The ISM neither produces the disks (as in one theory) nor depletes and eliminates them with time (as in another theory), because typical ISM grains are subject to strong radiative repulsion from A- and F-type dwarfs (a few to 100 times stronger than gravity). Atypically large ISM grains are not repelled strongly, but are unimportant on account of their small number density. Dust production and destruction in β Pic-type disks results mainly from their collisional nature enhanced by the radiatively produced eccentricities of particle orbits, rather than from nurture in a hostile ISM. The residence times of the few-micron dust grains predominant in the densest part of the β Pic disk is only 104 yr, or a few dozen orbital periods. Submicronic debris is blown out as β meteoroids, carrying away from this system an equivalent of the solar systems total mass in solids (~120 Earth masses) in only ~65 Myr. This rate of collisional erosion exceeds almost 108 times that of the zodiacal light disk of our own system. A massive and relatively young (102 Myr) planetesimal disk appears to surround β Pic, destined to decline in dust density over time comparable to its age. Other dust disks, like those around Fomalhaut and Vega, contain much less dust and may be much older than the β Pic disk, but like the β Pic disk they are also derived from and replenished many times during their lifetimes by unseen parent bodies.


The Astrophysical Journal | 2006

Evolution of the Color-Magnitude Relation in High-Redshift Clusters: Blue Early-Type Galaxies and Red Pairs in RDCS J0910+5422

Simona Mei; John P. Blakeslee; S. A. Stanford; B. Holden; P. Rosati; V. Strazzullo; N. Homeier; Marc Postman; Marijn Franx; A. Rettura; Holland C. Ford; G. D. Illingworth; Stefano Ettori; R. J. Bouwens; R. Demarco; Andre R. Martel; Mark C. Clampin; George F. Hartig; Peter R. M. Eisenhardt; D. R. Ardila; F. Bartko; N. Benítez; L. Bradley; Tom Broadhurst; Robert A. Brown; Christopher J. Burrows; E. S. Cheng; N. J. G. Cross; Paul D. Feldman; David A. Golimowski

The color-magnitude relation has been determined for the RDCS J0910+5422 cluster of galaxies at redshift z = 1.106. Cluster members were selected from HST Advanced Camera for Surveys (ACS) images, combined with ground–based near–IR imaging and optical spectroscopy. Postman et al. (2005) morphological classifications were used to identify the early-type galaxies. The observed early–type color–magnitude relation (CMR) in (i775 z850) versus z850 shows an intrinsic scatter in color of 0.060±0.009 mag, within 1 ′ from the cluster X–ray emission center. Both the ellipticals and the S0s show small scatter about the CMR of 0.042 ± 0.010 mag and 0.044± 0.020 mag, respectively. From the scatter about the CMR, a mean luminosity–weighted age t > 3.3 Gyr (zf > 3) is derived for the elliptical galaxies, assuming a simple stellar population modeling (single burst solar metallicity). This is consistent with a previous study of the cluster RDCS1252.9-292 at z=1.24 (Blakeslee et al.). Strikingly, the S0 galaxies in RDCS J0910+5422 are systematically bluer in (i775 z850) by 0.07 ± 0.02 mag, with respect to the ellipticals. The blue S0s are predominantly elongated in shape; the distribution of their ellipticities is inconsistent with a population of axisymmetric disk galaxies viewed at random orientations, suggesting either that they are intrinsically prolate or there is some orientation bias in the S0 classification. The ellipticity distribution as a function of color indicates that the face-on S0s in this particular cluster have likely been classified as elliptical. Thus, if anything, the offset in color between the elliptical and S0 populations may be even more significant. The color offset between S0 and E corresponds to an age difference of � 1 Gyr, for a singleburst solar metallicity model. Alternatively, it could be the result of a different star formation history; a solar metallicity model with an exponential decay in star formation will reproduce the offset for an age of 3.5 Gyr, i.e. the S0s have evolved gradually from star forming progenitors. The color offset could also be reproduced by a factor of �2 difference in metallicity, but the two populations would each need to have very small scatter in metallicity to reproduce the small scatter in color. The early–type population in this cluster appears to be still forming. The blue early-type disk galaxies in RDCS J0910+5422 likely represent the direct progenitors of the more evolved S0s that follow the same red sequence as ellipticals in other clusters. Thirteen red galaxy pairs are observed and the galaxies associated in pairs constitute �40% of the CMR galaxies in this cluster. This finding is consistent with the conclusions of van Dokkum and Tran et al. that most of the early–type galaxies grew from passive red mergers.

Collaboration


Dive into the Mark C. Clampin's collaboration.

Top Co-Authors

Avatar

Antonella Nota

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Golimowski

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Holland C. Ford

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Holland C. Ford

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claus Leitherer

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge