Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Entwistle is active.

Publication


Featured researches published by Mark Entwistle.


Journal of Modern Optics | 2011

Advances in InGaAsP-based avalanche diode single photon detectors

Mark A. Itzler; Xudong Jiang; Mark Entwistle; Krystyna Slomkowski; Alberto Tosi; Fabio Acerbi; Franco Zappa; Sergio Cova

In this Topical Review, we survey the state-of-the-art of single photon detectors based on avalanche diodes fabricated in the InGaAsP materials system for photon counting at near infrared wavelengths in the range from 0.9–1.6 µm. The fundamental trade-off between photon detection efficiency and dark count rate can now be managed with performance that adequately serves many applications, with low dark count rates of ∼1 kHz having been demonstrated at photon detection efficiencies of 20% for 25 µm diameter fiber-coupled devices with thermoelectric cooling. Timing jitter of less than 50 ps has been achieved, although device uniformity is shown to be essential in obtaining good jitter performance. Progress is also reported towards resolving the limitations imposed on photon counting rate by afterpulsing, with at least 50 MHz repetition frequencies demonstrated for 1 ns gated operation with afterpulsing limited to the range of 1–5%. We also present a discussion of future trends and challenges related to these devices organized according to the hierarchy of materials properties, device design concepts, signal processing and electronic circuitry, and multiplexing concepts. Whereas the materials properties of these devices may pose significant challenges for the foreseeable future, there has been considerable progress in device concepts and circuit solutions towards the present imperatives for higher counting rates and simpler device operation.


Journal of Modern Optics | 2012

Power law temporal dependence of InGaAs/InP SPAD afterpulsing

Mark A. Itzler; Xudong Jiang; Mark Entwistle

The characterization and analysis of afterpulsing behavior in InGaAs/InP single photon avalanche diodes (SPADs) is reported for gating frequencies between 10 and 50 MHz. Gating in this frequency range was accomplished using a matched delay line technique to achieve parasitic transient cancellation, and FPGA-based data acquisition firmware was implemented to provide an efficient, flexible multiple-gate sequencing methodology for obtaining the dependence of afterpulse probability P ap on hold-off time T ho. We show that the detrapping times extracted from the canonical exponential fitting of P ap(T ho) have no physical significance, and we propose an alternative description of the measured data, which is accurately fit with the simple power law behavior P ap ∝  with α ∼ 1.2 ± 0.2. We discuss the physical implications of this functional form, including what it may indicate about trap defect distributions and other possible origins of this power law behavior.


Proceedings of SPIE | 2010

Geiger-mode avalanche photodiode focal plane arrays for three-dimensional imaging LADAR

Mark A. Itzler; Mark Entwistle; Mark Owens; Ketan Patel; Xudong Jiang; Krystyna Slomkowski; Sabbir Rangwala; Peter Zalud; Tom Senko; John R. Tower; Joseph Ferraro

We report on the development of focal plane arrays (FPAs) employing two-dimensional arrays of InGaAsP-based Geiger-mode avalanche photodiodes (GmAPDs). These FPAs incorporate InP/InGaAs(P) Geiger-mode avalanche photodiodes (GmAPDs) to create pixels that detect single photons at shortwave infrared wavelengths with high efficiency and low dark count rates. GmAPD arrays are hybridized to CMOS read-out integrated circuits (ROICs) that enable independent laser radar (LADAR) time-of-flight measurements for each pixel, providing three-dimensional image data at frame rates approaching 200 kHz. Microlens arrays are used to maintain high fill factor of greater than 70%. We present full-array performance maps for two different types of sensors optimized for operation at 1.06 μm and 1.55 μm, respectively. For the 1.06 μm FPAs, overall photon detection efficiency of >40% is achieved at <20 kHz dark count rates with modest cooling to ~250 K using integrated thermoelectric coolers. We also describe the first evalution of these FPAs when multi-photon pulses are incident on single pixels. The effective detection efficiency for multi-photon pulses shows excellent agreement with predictions based on Poisson statistics. We also characterize the crosstalk as a function of pulse mean photon number. Relative to the intrinsic crosstalk contribution from hot carrier luminescence that occurs during avalanche current flows resulting from single incident photons, we find a modest rise in crosstalk for multi-photon incident pulses that can be accurately explained by direct optical scattering.


Proceedings of SPIE | 2009

InP-based Geiger-mode avalanche photodiode arrays for three-dimensional imaging at 1.06 μm

Mark A. Itzler; Mark Entwistle; Mark Owens; Xudong Jiang; Ketan Patel; Krystyna Slomkowski; Tim Koch; Sabbir Rangwala; Peter Zalud; Young Yu; John R. Tower; Joseph Ferraro

We report on the development of 32 x 32 focal plane arrays (FPAs) based on InGaAsP/InP Geiger-mode avalanche photodiodes (GmAPDs) designed for use in three-dimensional (3-D) laser radar imaging systems at 1064 nm. To our knowledge, this is the first realization of FPAs for 3-D imaging that employ a planar-passivated buried-junction InP-based GmAPD device platform. This development also included the design and fabrication of custom readout integrate circuits (ROICs) to perform avalanche detection and time-of-flight measurements on a per-pixel basis. We demonstrate photodiode arrays (PDAs) with a very narrow breakdown voltage distribution width of 0.34 V, corresponding to a breakdown voltage total variation of less than +/- 0.2%. At an excess bias voltage of 3.3 V, which provides 40% pixel-level single photon detection efficiency, we achieve average dark count rates of 2 kHz at an operating temperature of 248 K. We present the characterization of optical crosstalk induced by hot carrier luminescence during avalanche events, where we show that the worst-case crosstalk probability per pixel, which occurs for nearest neighbors, has a value of less than 1.6% and exhibits anisotropy due to isolation trench etch geometry. To demonstrate the FPA response to optical density variations, we show a simple image of a broadened optical beam.


Proceedings of SPIE | 2012

Geiger-mode APD camera system for single-photon 3D LADAR imaging

Mark Entwistle; Mark A. Itzler; James Ling Chen; Mark Owens; Ketan Patel; Xudong Jiang; Krystyna Slomkowski; Sabbir Rangwala

The unparalleled sensitivity of 3D LADAR imaging sensors based on single photon detection provides substantial benefits for imaging at long stand-off distances and minimizing laser pulse energy requirements. To obtain 3D LADAR images with single photon sensitivity, we have demonstrated focal plane arrays (FPAs) based on InGaAsP Geiger-mode avalanche photodiodes (GmAPDs) optimized for use at either 1.06 μm or 1.55 μm. These state-of-the-art FPAs exhibit excellent pixel-level performance and the capability for 100% pixel yield on a 32 x 32 format. To realize the full potential of these FPAs, we have recently developed an integrated camera system providing turnkey operation based on FPGA control. This system implementation enables the extremely high frame-rate capability of the GmAPD FPA, and frame rates in excess of 250 kHz (for 0.4 μs range gates) can be accommodated using an industry-standard CameraLink interface in full configuration. Real-time data streaming for continuous acquisition of 2 μs range gate point cloud data with 13-bit time-stamp resolution at 186 kHz frame rates has been established using multiple solid-state storage drives. Range gate durations spanning 4 ns to 10 μs provide broad operational flexibility. The camera also provides real-time signal processing in the form of multi-frame gray-scale contrast images and single-frame time-stamp histograms, and automated bias control has been implemented to maintain a constant photon detection efficiency in the presence of ambient temperature changes. A comprehensive graphical user interface has been developed to provide complete camera control using a simple serial command set, and this command set supports highly flexible end-user customization.


IEEE Journal of Selected Topics in Quantum Electronics | 2015

InP-Based Single-Photon Detectors and Geiger-Mode APD Arrays for Quantum Communications Applications

Xudong Jiang; Mark A. Itzler; Kevin O’Donnell; Mark Entwistle; Mark Owens; Krystyna Slomkowski; Sabbir Rangwala

To meet the increasing demand from quantum communications and other photon starved applications, we have developed various InP-based single-photon detectors, including discrete single-photon avalanche diodes (SPADs), negative feedback avalanche diodes (NFADs), and Geiger-mode avalanche photodiode (GmAPD) arrays. A large quantity of InP SPADs have been fabricated. Out of 1000 devices with a 25-μm active area diameter, operated under gated mode at temperature of 233 K, with a pulse repetition rate of 1 MHz and pulse width of 1 ns, the average dark count rate and afterpulsing probability are 30 kHz and 8 × 10-5, respectively. Smaller (16-μm active area diameter) and larger (40-μm active area diameter) discrete devices have been fabricated as well, and their performances are presented along with the 25-μm diameter devices. NFAD devices can operate in free running mode and photon detection efficiency of 10-15% can be achieved without applying any hold-off time externally. When the temperature decreases from 240 to 160 K, the noise equivalent power (NEP) decreasesfrom1.9 × 10-16 to 1.8 × 10-18WHz-1/2, with the activation energy being 0.2 eV. The very low NEP at 160 K makes NFAD devices an ideal choice for long distance, entanglement-based quantum key distributions. GmAPD arrays provide an enabling technology for many active optical applications, such as 3-D laser detection and ranging (LADAR) and photon starved optical communications. Both 32 × 32 and 128 × 32 GmAPD arrays have been fabricated with high performance and good uniformity. GmAPD focal plane arrays (FPAs) with framed readout mode have enabled very high-performance flash LADAR systems. GmAPD FPAs with asynchronous readout mode will enable high rate quantum key distributions and other quantum communications applications.


Proceedings of SPIE | 2011

Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging

Mark A. Itzler; Mark Entwistle; Mark Owens; Ketan Patel; Xudong Jiang; Krystyna Slomkowski; Sabbir Rangwala; Peter Zalud; Tom Senko; John R. Tower; Joseph Ferraro

We present results obtained from 3D imaging focal plane arrays (FPAs) employing planar-geometry InGaAsP/InP Geiger-mode avalanche photodiodes (GmAPDs) with high-efficiency single photon sensitivity at 1.06 μm. We report results obtained for new 32 x 128 format FPAs with 50 μm pitch and compare these results to those obtained for 32 x 32 format FPAs with 100 μm pitch. We show excellent pixel-level yield-including 100% pixel operability-for both formats. The dark count rate (DCR) and photon detection efficiency (PDE) performance is found to be similar for both types of arrays, including the fundamental DCR vs. PDE tradeoff. The optical crosstalk due to photon emission induced by pixel-level avalanche detection events is found to be qualitatively similar for both formats, with some crosstalk metrics for the 32 x 128 format found to be moderately elevated relative to the 32 x 32 FPA results. Timing jitter measurements are also reported for the 32 x 128 FPAs.


lasers and electro-optics society meeting | 2006

Afterpulsing in InGaAs/InP single photon avalanche photodetectors

Rafael Ben-Michael; Mark A. Itzler; Bruce Nyman; Mark Entwistle

The effect of short gating pulses on after-pulsing in a single photon avalanche photodetector operating at a telecom wavelength of 1.5 mum is characterized and discussed. Comparison between short and longer overbias gate pulses shows that the number of carriers created with a 1 ns (short) gating pulse is lower than that of a 20 ns pulse, when the avalanche is dark-count generated


Proceedings of SPIE | 2010

Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging

Mark A. Itzler; Mark Entwistle; Mark Owens; Ketan Patel; Xudong Jiang; Krystyna Slomkowski; Sabbir Rangwala; Peter Zalud; Tom Senko; John R. Tower; Joseph Ferraro

×We describe the design, fabrication, and performance of focal plane arrays (FPAs) for use in 3-D LADAR imaging applications requiring single photon sensitivity. These 32 × 32 FPAs provide high-efficiency single photon sensitivity for three-dimensional LADAR imaging applications at 1064 nm. Our GmAPD arrays are designed using a planarpassivated avalanche photodiode device platform with buried p-n junctions that has demonstrated excellent performance uniformity, operational stability, and long-term reliability. The core of the FPA is a chip stack formed by hybridizing the GmAPD photodiode array to a custom CMOS read-out integrated circuit (ROIC) and attaching a precision-aligned GaP microlens array (MLA) to the back-illuminated detector array. Each ROIC pixel includes an active quenching circuit governing Geiger-mode operation of the corresponding avalanche photodiode pixel as well as a pseudo-random counter to capture per-pixel time-of-flight timestamps in each frame. The FPA has been designed to operate at frame rates as high as 186 kHz for 2 μs range gates. Effective single photon detection efficiencies as high as 40% (including all optical transmission and MLA losses) are achieved for dark count rates below 20 kHz. For these planar-geometry diffused-junction GmAPDs, isolation trenches are used to reduce crosstalk due to hot carrier luminescence effects during avalanche events, and we present details of the crosstalk performance for different operating conditions. Direct measurement of temporal probability distribution functions due to cumulative timing uncertainties of the GmAPDs and ROIC circuitry has demonstrated a FWHM timing jitter as low as 265 ps (standard deviation is ~100 ps).


Proceedings of SPIE | 2011

InGaAs/InP negative feedback avalanche diodes (NFADs)

Xudong Jiang; Mark A. Itzler; Kevin O'Donnell; Mark Entwistle; Krystyna Slomkowski

In recent years substantial effort has been made in material growth, device design and fabrication, and driving circuitry to improve the performance of InGaAs/InP single photon avalanche diodes (SPADs) operated in Geiger mode. Despite these efforts, InGaAs/InP SPADs are constrained by certain performance limitations due to the inherent positive feedback involved in the avalanche process. With the goal of overcoming some of these performance limitations, we have successfully designed and implemented thin film resistors monolithically integrated with InGaAs/InP SPADs to provide a negative feedback mechanism to regulate the avalanche sizes. The monolithic integration scheme ensures very small parasitic effects, results in fast quenching of avalanches, and allows for wafer-level integration which facilitates the fabrication of array structures. We will discuss the design and operation of NFAD devices and performance characterization of these devices. Basic characteristics of NFADs such as pulse response, quenching and recovery dynamics will be described. We will also present device performance parameters such as photon detection efficiency (PDE), dark count rate (DCR) and afterpulsing probability (Pap). InGaAs/InP negative feedback avalanche diodes with different device sizes and quenching resistances have been designed and fabricated. Devices with ~10% PDE and acceptable Pap has been realized, which provides a simple, practical solution for certain photon-counting applications.

Collaboration


Dive into the Mark Entwistle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge