Mark H. Stockett
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mark H. Stockett.
Review of Scientific Instruments | 2013
H. T. Schmidt; Richard D. Thomas; Michael Gatchell; S. Rosén; Peter Reinhed; Patrik Löfgren; Lars Brännholm; Mikael Blom; Mikael Björkhage; Erik Bäckström; John D. Alexander; Sven Leontein; Dag Hanstorp; Henning Zettergren; L. Liljeby; A. Källberg; Ansgar Simonsson; Fredrik Hellberg; Sven Mannervik; Mats Larsson; Wolf D. Geppert; Karl-Gunnar Rensfelt; H. Danared; A. Paal; Masaharu Masuda; Per Halldén; Guillermo Andler; Mark H. Stockett; Tao Chen; Gunnar Källersjö
We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.
Journal of Physical Chemistry Letters | 2015
Rudy Delaunay; Michael Gatchell; Patrick Rousseau; A. Domaracka; Sylvain Maclot; Yang Wang; Mark H. Stockett; Tao Chen; L. Adoui; Manuel Alcamí; Fernando Martín; Henning Zettergren; H. Cederquist; B. A. Huber
The present work combines experimental and theoretical studies of the collision between keV ion projectiles and clusters of pyrene, one of the simplest polycyclic aromatic hydrocarbons (PAHs). Intracluster growth processes induced by ion collisions lead to the formation of a wide range of new molecules with masses larger than that of the pyrene molecule. The efficiency of these processes is found to strongly depend on the mass and velocity of the incoming projectile. Classical molecular dynamics simulations of the entire collision process-from the ion impact (nuclear scattering) to the formation of new molecular species-reproduce the essential features of the measured molecular growth process and also yield estimates of the related absolute cross sections. More elaborate density functional tight binding calculations yield the same growth products as the classical simulations. The present results could be relevant to understand the physical chemistry of the PAH-rich upper atmosphere of Saturns moon Titan.
Journal of Chemical Physics | 2015
Tao Chen; Michael Gatchell; Mark H. Stockett; Rudy Delaunay; A. Domaracka; E. R. Micelotta; A. G. G. M. Tielens; Patrick Rousseau; L. Adoui; B. A. Huber; H. T. Schmidt; H. Cederquist; Henning Zettergren
We have investigated the effectiveness of molecular hydrogen (H2) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H2 formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis also suggests that H2 emission is correlated with multi-fragmentation processes, which means that the [PAH-2H](+) peak intensities in the mass spectra may not be used for estimating H2-formation rates.
Journal of Chemical Physics | 2014
Tao Chen; Michael Gatchell; Mark H. Stockett; John D. Alexander; Y. Zhang; Patrick Rousseau; A. Domaracka; Sylvain Maclot; Rudy Delaunay; L. Adoui; B. A. Huber; Thomas Schlathölter; H. T. Schmidt; H. Cederquist; Henning Zettergren
We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH(+)) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH(+) + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C6H5). Thus nonstatistical fragmentation may be an effective initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.
Journal of Chemical Physics | 2013
Fabian Seitz; Henning Zettergren; Patrick Rousseau; Yang Wang; Tao Chen; Michael Gatchell; John D. Alexander; Mark H. Stockett; Jimmy Rangama; J.-Y. Chesnel; M. Capron; Jean-Christophe Poully; A. Domaracka; A. Méry; Sylvain Maclot; Violaine Vizcaino; H. T. Schmidt; L. Adoui; Manuel Alcamí; A. G. G. M. Tielens; Fernando Martín; B. A. Huber; H. Cederquist
We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C60 molecules following collisions with Ar(2+), He(2+), and Xe(20+) at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C60 monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C60]n(+) → C60(+)+(n-1)C60 evaporation model. Excitation energies in the range of only ~0.7 eV per C60 molecule in a [C60]13(+) cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar(2+) and He(2+) collisions, we observe very efficient C119(+) and C118(+) formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C59(+) or C58(+) and C60 during cluster fragmentation. In the Ar(2+) case, it is possible to form even smaller C120-2m(+) molecules (m = 2-7), while no molecular fusion reactions are observed for the present Xe(20+) collisions.
Journal of Physical Chemistry Letters | 2015
Mark H. Stockett; Michael Gatchell; Tao Chen; N. de Ruette; Linda Giacomozzi; M. Wolf; H. T. Schmidt; Henning Zettergren; H. Cederquist
We have measured absolute cross sections for ultrafast (femtosecond) single-carbon knockout from polycyclic aromatic hydrocarbon (PAH) cations as functions of He–PAH center-of-mass collision energy in the 10–200 eV range. Classical molecular dynamics (MD) simulations cover this range and extend up to 105 eV. The shapes of the knockout cross sections are well-described by a simple analytical expression yielding experimental and MD threshold energies of EthExp = 32.5 ± 0.4 eV and EthMD = 41.0 ± 0.3 eV, respectively. These are the first measurements of knockout threshold energies for molecules isolated in vacuo. We further deduce semiempirical (SE) and MD displacement energies, i.e., the energy transfers to the PAH molecules at the threshold energies for knockout, of TdispSE = 23.3 ± 0.3 eV and TdispMD = 27.0 ± 0.3 eV. The semiempirical results compare favorably with measured displacement energies for graphene (Tdisp = 23.6 eV).
Journal of Chemical Physics | 2015
Mark H. Stockett; S. Brøndsted Nielsen
Tris(bipyridine)ruthenium(II) (Ru(bipy)3 (2+)) is a prototypical transition metal coordination complex whose photophysical properties have attracted considerable attention. A much debated issue is whether the metal-to-ligand charge transfer (MLCT) transition that accounts for the complexs beautiful red color is fully delocalized across all three bipyridine ligands or located on just one ligand. Here, we show based on gas-phase action spectroscopy that attachment of a single acetonitrile molecule does not change the absorption spectrum from that of the bare ions, which is indicative of a delocalized state. However, the gas-phase spectra of the bare and one solvent molecule complexes are significantly blueshifted relative to that obtained in bulk acetonitrile, which suggests that in solution the polarizability of many solvent molecules working together can localize the MLCT state. Our data clearly show that more than one solvent molecule is needed to break the symmetry of the MLCT excited state and reproduce its solution-phase characteristics.
Review of Scientific Instruments | 2016
Mark H. Stockett; Jørgen Houmøller; Kristian Støchkel; Annette Svendsen; Steen Brøndsted Nielsen
A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.
Physical Review A | 2015
Michael Gatchell; Mark H. Stockett; N. de Ruette; Tao Chen; Linda Giacomozzi; R. F. Nascimento; M. Wolf; Emma Anderson; Rudy Delaunay; Violaine Vizcaino; Patrick Rousseau; L. Adoui; B. A. Huber; H. T. Schmidt; Henning Zettergren; H. Cederquist
A recent study of soft x-ray absorption in native and hydrogenated coronene cations, C_24H_12+m^+ m=0–7, led to the conclusion that additional hydrogen atoms protect (interstellar) polycyclic aromatic hydrocarbon (PAH) molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002 (2014)]. The present experiment with collisions between fast (30–200 eV) He atoms and pyrene (C_16H_10+m^+, m=0, 6, and 16) and simulations without reference to the excitation method suggests the opposite. We find that the absolute carbon-backbone fragmentation cross section does not decrease but increases with the degree of hydrogenation for pyrene molecules.
Journal of Chemical Physics | 2016
Mark H. Stockett; Jørgen Houmøller; S. Brøndsted Nielsen
Nile blue is used extensively in biology as a histological stain and fluorescent probe. Its absorption and emission spectra are strongly solvent dependent, with variations larger than 100 nm. The molecule is charged due to an iminium group, and it is therefore an obvious target for gas-phase ion spectroscopy. Here we report the absorption and emission spectra of the mass-selected bare ions isolated in vacuo, and based on our results we revisit the interpretation of solution-phase spectra. An accelerator mass spectrometer was used for absorption spectroscopy where the absorption is represented by the yield of photofragment ions versus excitation wavelength (action spectroscopy). The luminescence experiments were done with a newly built ion trap setup equipped with an electrospray ion source, and some details on the mass selection technique will be given which have not been described before. In vacuo, the absorption and emission maxima are at 580 ± 10 nm and 628 ± 1 nm. These values are somewhat blue-shifted relative to those obtained in most solvents; however, they are much further to the red than those in some of the most non-polar solvents. Furthermore, the Stokes shift in the gas phase (1300 cm(-1)) is much smaller than that in these non-polar solvents but similar to that in polar ones. An explanation based on charge localization by solvent dipoles, or by counterions in some non-polar solvents, can fully account for these findings. Hence in the case of ions, it is nontrivial to establish intrinsic electronic transition energies from solvatochromic shifts alone.