Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark L. Dell’Acqua is active.

Publication


Featured researches published by Mark L. Dell’Acqua.


Cell Reports | 2014

AKAP-Anchored PKA Maintains Neuronal L-type Calcium Channel Activity and NFAT Transcriptional Signaling

Jonathan G. Murphy; Jennifer L. Sanderson; Jessica A. Gorski; John D. Scott; William A. Catterall; William A. Sather; Mark L. Dell’Acqua

L-type voltage-gated Ca2+ channels (LTCC) couple neuronal excitation to gene transcription. LTCC activity is elevated by the cyclic AMP (cAMP)-dependent protein kinase (PKA) and depressed by the Ca2+-dependent phosphatase calcineurin (CaN), and both enzymes are localized to the channel by A-kinase anchoring protein 79/150 (AKAP79/150). AKAP79/150 anchoring of CaN also promotes LTCC activation of transcription through dephosphorylation of the nuclear factor of activated T cells (NFAT). We report here that the basal activity of AKAP79/150-anchored PKA maintains neuronal LTCC coupling to CaN-NFAT signaling by preserving LTCC phosphorylation in opposition to anchored CaN. Genetic disruption of AKAP-PKA anchoring promoted redistribution of the kinase out of postsynaptic dendritic spines, profound decreases in LTCC phosphorylation and Ca2+ influx, and impaired NFAT movement to the nucleus and activation of transcription. Thus, LTCC-NFAT transcriptional signaling in neurons requires precise organization and balancing of PKA and CaN activities in the channel nanoenvironment, which is only made possible by AKAP79/150 scaffolding.


Circulation Research | 2014

AKAP150 Contributes to Enhanced Vascular Tone by Facilitating Large-Conductance Ca2+-Activated K+ Channel Remodeling in Hyperglycemia and Diabetes Mellitus

Matthew A. Nystoriak; Madeline Nieves-Cintrón; Patrick J. Nygren; Simon A. Hinke; C. Blake Nichols; Chao Yin Chen; Jose L. Puglisi; Leighton T. Izu; Donald M. Bers; Mark L. Dell’Acqua; John D. Scott; Luis F. Santana; Manuel F. Navedo

Rationale: Increased contractility of arterial myocytes and enhanced vascular tone during hyperglycemia and diabetes mellitus may arise from impaired large-conductance Ca2+-activated K+ (BKCa) channel function. The scaffolding protein A-kinase anchoring protein 150 (AKAP150) is a key regulator of calcineurin (CaN), a phosphatase known to modulate the expression of the regulatory BKCa &bgr;1 subunit. Whether AKAP150 mediates BKCa channel suppression during hyperglycemia and diabetes mellitus is unknown. Objective: To test the hypothesis that AKAP150-dependent CaN signaling mediates BKCa &bgr;1 downregulation and impaired vascular BKCa channel function during hyperglycemia and diabetes mellitus. Methods and Results: We found that AKAP150 is an important determinant of BKCa channel remodeling, CaN/nuclear factor of activated T-cells c3 (NFATc3) activation, and resistance artery constriction in hyperglycemic animals on high-fat diet. Genetic ablation of AKAP150 protected against these alterations, including augmented vasoconstriction. D-glucose–dependent suppression of BKCa channel &bgr;1 subunits required Ca2+ influx via voltage-gated L-type Ca2+ channels and mobilization of a CaN/NFATc3 signaling pathway. Remarkably, high-fat diet mice expressing a mutant AKAP150 unable to anchor CaN resisted activation of NFATc3 and downregulation of BKCa &bgr;1 subunits and attenuated high-fat diet–induced elevation in arterial blood pressure. Conclusions: Our results support a model whereby subcellular anchoring of CaN by AKAP150 is a key molecular determinant of vascular BKCa channel remodeling, which contributes to vasoconstriction during diabetes mellitus.


Neuron | 2016

NMDA Receptor-Dependent LTD Requires Transient Synaptic Incorporation of Ca2+-Permeable AMPARs Mediated by AKAP150-Anchored PKA and Calcineurin

Jennifer L. Sanderson; Jessica A. Gorski; Mark L. Dell’Acqua

Information processing in the brain requires multiple forms of synaptic plasticity that converge on regulation of NMDA and AMPA-type glutamate receptors (NMDAR, AMPAR), including long-term potentiation (LTP) and long-term depression (LTD) and homeostatic scaling. In some cases, LTP and homeostatic plasticity regulate synaptic AMPAR subunit composition to increase the contribution of Ca(2+)-permeable receptors (CP-AMPARs) containing GluA1 but lacking GluA2 subunits. Here, we show that PKA anchored to the scaffold protein AKAP150 regulates GluA1 phosphorylation and plays a novel role controlling CP-AMPAR synaptic incorporation during NMDAR-dependent LTD. Using knockin mice that are deficient in AKAP-anchoring of either PKA or the opposing phosphatase calcineurin, we found that CP-AMPARs are recruited to hippocampal synapses by anchored PKA during LTD induction but are then rapidly removed by anchored calcineurin. Importantly, blocking CP-AMPAR recruitment, removal, or activity interferes with LTD. Thus, CP-AMPAR synaptic recruitment is required to transiently augment NMDAR Ca(2+) signaling during LTD induction.


Neuron | 2017

Optogenetic Control of Synaptic Composition and Function

Brooke L. Sinnen; Aaron B. Bowen; Jeffrey S. Forte; Brian G. Hiester; Kevin C. Crosby; Emily S. Gibson; Mark L. Dell’Acqua; Matthew J. Kennedy

The molecular composition of the postsynaptic membrane is sculpted by synaptic activity. During synaptic plasticity at excitatory synapses, numerous structural, signaling, and receptor molecules concentrate at the postsynaptic density (PSD) to regulate synaptic strength. We developed an approach that uses light to tune the abundance of specific molecules in the PSD. We used this approach to investigate the relationship between the number of AMPA-type glutamate receptors in the PSD and synaptic strength. Surprisingly, adding more AMPA receptors to excitatory contacts had little effect on synaptic strength. Instead, we observed increased excitatory input through the apparent addition of new functional sites. Our data support a model where adding AMPA receptors is sufficient to activate synapses that had few receptors to begin with, but that additional remodeling events are required to strengthen established synapses. More broadly, this approach introduces the precise spatiotemporal control of optogenetics to the molecular control of synaptic function.


Cell Reports | 2014

Ca2+/Calcineurin-Dependent Inactivation of Neuronal L-Type Ca2+ Channels Requires Priming by AKAP-Anchored Protein Kinase A

Philip J. Dittmer; Mark L. Dell’Acqua; William A. Sather

Within neurons, Ca2+-dependent inactivation (CDI) of voltage-gated L-type Ca2+ channels shapes cytoplasmic Ca2+ signals. CDI is initiated by Ca2+ binding to channel-associated calmodulin and subsequent Ca2+/calmodulin activation of the Ca2+-dependent phosphatase, calcineurin (CaN), which is targeted to L channels by the A-kinase-anchoring protein AKAP79/150. Here, we report that CDI of neuronal L channels was abolished by inhibition of PKA activity or PKA anchoring to AKAP79/150 and that CDI was also suppressed by stimulation of PKA activity. Although CDI was reduced by positive or negative manipulation of PKA, interference with PKA anchoring or activity lowered Ca2+ current density whereas stimulation of PKA activity elevated it. In contrast, inhibition of CaN reduced CDI but had no effect on current density. These results suggest a model wherein PKA-dependent phosphorylation enhances neuronal L current, thereby priming channels to undergo CDI, and Ca2+/calmodulin-activated CaN actuates CDI by reversing PKA-mediated enhancement of channel activity.


Cell Reports | 2017

STIM1 Ca2+ Sensor Control of L-type Ca2+-Channel-Dependent Dendritic Spine Structural Plasticity and Nuclear Signaling

Philip J. Dittmer; Angela R. Wild; Mark L. Dell’Acqua; William A. Sather

Potentiation of synaptic strength relies on postsynaptic Ca2+ signals, modification of dendritic spine structure, and changes in gene expression. One Ca2+ signaling pathway supporting these processes routes through L-type Ca2+ channels (LTCC), whose activity is subject to tuning by multiple mechanisms. Here, we show in hippocampal neurons that LTCC inhibition by the endoplasmic reticulum (ER) Ca2+ sensor, stromal interaction molecule 1 (STIM1), is engaged by the neurotransmitter glutamate, resulting in regulation of spine ER structure and nuclear signaling by the NFATc3 transcription factor. In this mechanism, depolarization by glutamate activates LTCC Ca2+ influx, releases Ca2+ from the ER, and consequently drives STIM1 aggregation and an inhibitory interaction with LTCCs that increases spine ER content but decreases NFATc3 nuclear translocation. These findings of negative feedback control of LTCC signaling by STIM1 reveal interplay between Ca2+ influx and release from stores that controls both postsynaptic structural plasticity and downstream nuclear signaling.


PLOS ONE | 2015

Deficiency of Lipoprotein Lipase in Neurons Decreases AMPA Receptor Phosphorylation and Leads to Neurobehavioral Abnormalities in Mice

Tian Yu; Matthew D. Taussig; Nicholas V. DiPatrizio; Giuseppe Astarita; Daniele Piomelli; Bryan C. Bergman; Mark L. Dell’Acqua; Robert H. Eckel; Hong Wang

Alterations in lipid metabolism have been found in several neurodegenerative disorders, including Alzheimer’s disease. Lipoprotein lipase (LPL) hydrolyzes triacylglycerides in lipoproteins and regulates lipid metabolism in multiple organs and tissues, including the central nervous system (CNS). Though many brain regions express LPL, the functions of this lipase in the CNS remain largely unknown. We developed mice with neuron-specific LPL deficiency that became obese on chow by 16 wks in homozygous mutant mice (NEXLPL-/-) and 10 mo in heterozygous mice (NEXLPL+/-). In the present study, we show that 21 mo NEXLPL+/- mice display substantial cognitive function decline including poorer learning and memory, and increased anxiety with no difference in general motor activities and exploratory behavior. These neurobehavioral abnormalities are associated with a reduction in the 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptor subunit GluA1 and its phosphorylation, without any alterations in amyloid β accumulation. Importantly, a marked deficit in omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in the hippocampus precedes the development of the neurobehavioral phenotype of NEXLPL+/- mice. And, a diet supplemented with n-3 PUFA can improve the learning and memory of NEXLPL+/- mice at both 10 mo and 21 mo of age. We interpret these findings to indicate that LPL regulates the availability of PUFA in the CNS and, this in turn, impacts the strength of synaptic plasticity in the brain of aging mice through the modification of AMPA receptor and its phosphorylation.


Cell Reports | 2018

AKAP150 Palmitoylation Regulates Synaptic Incorporation of Ca2+-Permeable AMPA Receptors to Control LTP

Alicia Purkey; Kevin M. Woolfrey; Kevin C. Crosby; Dominik G. Stich; Wallace S. Chick; Jason Aoto; Mark L. Dell’Acqua

SUMMARY Ca2+-permeable AMPA-type glutamate receptors (CP-AMPARs) containing GluA1 but lacking GluA2 subunits contribute to multiple forms of synaptic plasticity, including long-term potentiation (LTP), but mechanisms regulating CP-AMPARs are poorly understood. A-kinase anchoring protein (AKAP) 150 scaffolds kinases and phosphatases to regulate GluA1 phosphorylation and trafficking, and trafficking of AKAP150 itself is modulated by palmitoylation on two Cys residues. Here, we developed a palmitoylation-deficient knockin mouse to show that AKAP150 palmitoylation regulates CP-AMPAR incorporation at hippocampal synapses. Using biochemical, super-resolution imaging, and electrophysiological approaches, we found that palmitoylation promotes AKAP150 localization to recycling endosomes and the postsynaptic density (PSD) to limit CP-AMPAR basal synaptic incorporation. In addition, we found that AKAP150 palmitoylation is required for LTP induced by weaker stimulation that recruits CP-AMPARs to synapses but not stronger stimulation that recruits GluA2-containing AMPARs. Thus, AKAP150 palmitoylation controls its subcellular localization to maintain proper basal and activity-dependent regulation of synaptic AMPAR subunit composition.


Circulation Research | 2014

AKAP150 Contributes to Enhanced Vascular Tone by Facilitating Large-Conductance Ca2+-Activated K+ Channel Remodeling in Hyperglycemia and Diabetes MellitusNovelty and Significance

Matthew A. Nystoriak; Madeline Nieves-Cintrón; Patrick J. Nygren; Simon A. Hinke; C. Blake Nichols; Chao Yin Chen; Jose L. Puglisi; Leighton T. Izu; Donald M. Bers; Mark L. Dell’Acqua; John D. Scott; Luis F. Santana; Manuel F. Navedo

Rationale: Increased contractility of arterial myocytes and enhanced vascular tone during hyperglycemia and diabetes mellitus may arise from impaired large-conductance Ca2+-activated K+ (BKCa) channel function. The scaffolding protein A-kinase anchoring protein 150 (AKAP150) is a key regulator of calcineurin (CaN), a phosphatase known to modulate the expression of the regulatory BKCa &bgr;1 subunit. Whether AKAP150 mediates BKCa channel suppression during hyperglycemia and diabetes mellitus is unknown. Objective: To test the hypothesis that AKAP150-dependent CaN signaling mediates BKCa &bgr;1 downregulation and impaired vascular BKCa channel function during hyperglycemia and diabetes mellitus. Methods and Results: We found that AKAP150 is an important determinant of BKCa channel remodeling, CaN/nuclear factor of activated T-cells c3 (NFATc3) activation, and resistance artery constriction in hyperglycemic animals on high-fat diet. Genetic ablation of AKAP150 protected against these alterations, including augmented vasoconstriction. D-glucose–dependent suppression of BKCa channel &bgr;1 subunits required Ca2+ influx via voltage-gated L-type Ca2+ channels and mobilization of a CaN/NFATc3 signaling pathway. Remarkably, high-fat diet mice expressing a mutant AKAP150 unable to anchor CaN resisted activation of NFATc3 and downregulation of BKCa &bgr;1 subunits and attenuated high-fat diet–induced elevation in arterial blood pressure. Conclusions: Our results support a model whereby subcellular anchoring of CaN by AKAP150 is a key molecular determinant of vascular BKCa channel remodeling, which contributes to vasoconstriction during diabetes mellitus.


Archive | 2010

Subcellular Targeting of PKA through AKAPs

Matthew D. Pink; Mark L. Dell’Acqua

Publisher Summary This chapter focuses on the structurally conserved regulatory (R) subunit anchoring domain and deals with the examples of unique subcellular targeting domains that localize anchored-protein kinase (PKA) for regulation of co-localized target substrates. There are three PKA C subunit isoforms (Cαβγ, Cβ, Cγ) and four R subunit isoforms (RIα, RIβ, RIIα, RIIβ). NMR structural studies show that both the RI and RII N-terminal dimerization domains form anti-parallel four-helix bundles in which dimerization creates an extended hydrophobic surface that binds the A-kinase anchoring proteins (AKAP). The AKAPs all bind to the R subunit N-terminal dimerization domain through hydrophobic interactions. The PKA anchoring domains from different AKAPs have very little primary amino acid sequence similarity yet share a conserved hydrophobic character and secondary structure. Thus, AKAPs are a family of functionally related proteins arising from convergent evolution, as opposed to diverging from a common ancestral AKAP protein. The common hydrophobic and secondary structure in AKAP PKA anchoring domains is seen as a conserved spacing of hydrophobic residues, which map to one side of an amphipathic α-helix of about 18 residues in length. AKAP molecules have been characterized at a myriad of distinct subcellular locations including the plasma membrane, intracellular vesicles, actin and microtubule cytoskeletons, mitochondria, endoplasmic reticulum (ER), Golgi, and centrosomes. The AKAP protein MAP2 is targeted to dendritic microtubules in neurons by direct binding to tubulin. Scar/Wave1, an AKAP that also anchors the abl-Tyrosine kinase, binds to actin both in focal adhesions and membrane ruffles in fibroblasts where it regulates the actin polymerization activity of the Arp2/3 complex.

Collaboration


Dive into the Mark L. Dell’Acqua's collaboration.

Top Co-Authors

Avatar

Jessica A. Gorski

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Matthew D. Pink

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

William A. Sather

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Sanderson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

John D. Scott

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Philip J. Dittmer

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Yin Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Donald M. Bers

University of California

View shared research outputs
Top Co-Authors

Avatar

Emily S. Gibson

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge