Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark O. Collins is active.

Publication


Featured researches published by Mark O. Collins.


Nature | 2002

Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)

Stephen D. Bentley; K. F. Chater; A.-M. Cerdeño-Tárraga; Gregory L. Challis; Nicholas R. Thomson; Keith D. James; David Harris; M. A. Quail; H. Kieser; D. Harper; Alex Bateman; S. Brown; G. Chandra; Carton W. Chen; Mark O. Collins; Ann Cronin; Audrey Fraser; Arlette Goble; J. Hidalgo; T. Hornsby; S. Howarth; Chih-Hung Huang; T. Kieser; L. Larke; Lee Murphy; K. Oliver; Susan O'Neil; Ester Rabbinowitsch; Marie-Adele Rajandream; Kim Rutherford

Streptomyces coelicolor is a representative of the group of soil-dwelling, filamentous bacteria responsible for producing most natural antibiotics used in human and veterinary medicine. Here we report the 8,667,507 base pair linear chromosome of this organism, containing the largest number of genes so far discovered in a bacterium. The 7,825 predicted genes include more than 20 clusters coding for known or predicted secondary metabolites. The genome contains an unprecedented proportion of regulatory genes, predominantly those likely to be involved in responses to external stimuli and stresses, and many duplicated gene sets that may represent ‘tissue-specific’ isoforms operating in different phases of colonial development, a unique situation for a bacterium. An ancient synteny was revealed between the central ‘core’ of the chromosome and the whole chromosome of pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. The genome sequence will greatly increase our understanding of microbial life in the soil as well as aiding the generation of new drug candidates by genetic engineering.


Nature | 2014

A polygenic burden of rare disruptive mutations in schizophrenia

Shaun Purcell; Jennifer L. Moran; Menachem Fromer; Douglas M. Ruderfer; Nadia Solovieff; Panos Roussos; Colm O'Dushlaine; K D Chambert; Sarah E. Bergen; Anna K. Kähler; Laramie Duncan; Eli A. Stahl; Giulio Genovese; Esperanza Fernández; Mark O. Collins; Noboru H. Komiyama; Jyoti S. Choudhary; Patrik K. E. Magnusson; Eric Banks; Khalid Shakir; Kiran Garimella; Timothy Fennell; Mark DePristo; Seth G. N. Grant; Stephen J. Haggarty; Stacey Gabriel; Edward M. Scolnick; Eric S. Lander; Christina M. Hultman; Patrick F. Sullivan

Schizophrenia is a common disease with a complex aetiology, probably involving multiple and heterogeneous genetic factors. Here, by analysing the exome sequences of 2,536 schizophrenia cases and 2,543 controls, we demonstrate a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes. Particularly enriched gene sets include the voltage-gated calcium ion channel and the signalling complex formed by the activity-regulated cytoskeleton-associated scaffold protein (ARC) of the postsynaptic density, sets previously implicated by genome-wide association and copy-number variation studies. Similar to reports in autism, targets of the fragile X mental retardation protein (FMRP, product of FMR1) are enriched for case mutations. No individual gene-based test achieves significance after correction for multiple testing and we do not detect any alleles of moderately low frequency (approximately 0.5 to 1 per cent) and moderately large effect. Taken together, these data suggest that population-based exome sequencing can discover risk alleles and complements established gene-mapping paradigms in neuropsychiatric disease.


Molecular Psychiatry | 2012

De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia.

George Kirov; Andrew Pocklington; Peter Alan Holmans; Dobril Ivanov; Masashi Ikeda; Douglas M. Ruderfer; Jennifer L. Moran; Draga Toncheva; Lyudmila Georgieva; Detelina Grozeva; Marija Fjodorova; Rebecca Louise Wollerton; Elliott Rees; Ivan Nikolov; L N van de Lagemaat; Àlex Bayés; Esperanza Fernández; Pall Olason; Yvonne Böttcher; Noboru H. Komiyama; Mark O. Collins; Jyoti S. Choudhary; Kari Stefansson; Hreinn Stefansson; Seth G. N. Grant; Shaun Purcell; Pamela Sklar; Michael Conlon O'Donovan; Michael John Owen

A small number of rare, recurrent genomic copy number variants (CNVs) are known to substantially increase susceptibility to schizophrenia. As a consequence of the low fecundity in people with schizophrenia and other neurodevelopmental phenotypes to which these CNVs contribute, CNVs with large effects on risk are likely to be rapidly removed from the population by natural selection. Accordingly, such CNVs must frequently occur as recurrent de novo mutations. In a sample of 662 schizophrenia proband–parent trios, we found that rare de novo CNV mutations were significantly more frequent in cases (5.1% all cases, 5.5% family history negative) compared with 2.2% among 2623 controls, confirming the involvement of de novo CNVs in the pathogenesis of schizophrenia. Eight de novo CNVs occurred at four known schizophrenia loci (3q29, 15q11.2, 15q13.3 and 16p11.2). De novo CNVs of known pathogenic significance in other genomic disorders were also observed, including deletion at the TAR (thrombocytopenia absent radius) region on 1q21.1 and duplication at the WBS (Williams–Beuren syndrome) region at 7q11.23. Multiple de novos spanned genes encoding members of the DLG (discs large) family of membrane-associated guanylate kinases (MAGUKs) that are components of the postsynaptic density (PSD). Two de novos also affected EHMT1, a histone methyl transferase known to directly regulate DLG family members. Using a systems biology approach and merging novel CNV and proteomics data sets, systematic analysis of synaptic protein complexes showed that, compared with control CNVs, case de novos were significantly enriched for the PSD proteome (P=1.72 × 10−6). This was largely explained by enrichment for members of the N-methyl-D-aspartate receptor (NMDAR) (P=4.24 × 10−6) and neuronal activity-regulated cytoskeleton-associated protein (ARC) (P=3.78 × 10−8) postsynaptic signalling complexes. In an analysis of 18 492 subjects (7907 cases and 10 585 controls), case CNVs were enriched for members of the NMDAR complex (P=0.0015) but not ARC (P=0.14). Our data indicate that defects in NMDAR postsynaptic signalling and, possibly, ARC complexes, which are known to be important in synaptic plasticity and cognition, play a significant role in the pathogenesis of schizophrenia.


Journal of Neurochemistry | 2006

Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome.

Mark O. Collins; Holger Husi; Lu Yu; Julia M. Brandon; Chris N. G. Anderson; Walter P. Blackstock; Jyoti S. Choudhary; Seth G. N. Grant

Characterization of the composition of the postsynaptic proteome (PSP) provides a framework for understanding the overall organization and function of the synapse in normal and pathological conditions. We have identified 698 proteins from the postsynaptic terminal of mouse CNS synapses using a series of purification strategies and analysis by liquid chromatography tandem mass spectrometry and large‐scale immunoblotting. Some 620 proteins were found in purified postsynaptic densities (PSDs), nine in AMPA‐receptor immuno‐purifications, 100 in isolates using an antibody against the NMDA receptor subunit NR1, and 170 by peptide‐affinity purification of complexes with the C‐terminus of NR2B. Together, the NR1 and NR2B complexes contain 186 proteins, collectively referred to as membrane‐associated guanylate kinase‐associated signalling complexes. We extracted data from six other synapse proteome experiments and combined these with our data to provide a consensus on the composition of the PSP. In total, 1124 proteins are present in the PSP, of which 466 were validated by their detection in two or more studies, forming what we have designated the Consensus PSD. These synapse proteome data sets offer a basis for future research in synaptic biology and will provide useful information in brain disease and mental disorder studies.


Nature Neuroscience | 2011

Characterization of the proteome, diseases and evolution of the human postsynaptic density

Àlex Bayés; Louie N. van de Lagemaat; Mark O. Collins; Mike D R Croning; Ian R. Whittle; Jyoti S. Choudhary; Seth G. N. Grant

We isolated the postsynaptic density from human neocortex (hPSD) and identified 1,461 proteins. hPSD mutations cause 133 neurological and psychiatric diseases and were enriched in cognitive, affective and motor phenotypes underpinned by sets of genes. Strong protein sequence conservation in mammalian lineages, particularly in hub proteins, indicates conserved function and organization in primate and rodent models. The hPSD is an important structure for nervous system disease and behavior.


Molecular Systems Biology | 2009

Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins

Esperanza Fernández; Mark O. Collins; Rachel T. Uren; Maksym V. Kopanitsa; Noboru H. Komiyama; Mike D R Croning; Lysimachos Zografos; J. Douglas Armstrong; Jyoti S. Choudhary; Seth G. N. Grant

The molecular complexity of mammalian proteomes demands new methods for mapping the organization of multiprotein complexes. Here, we combine mouse genetics and proteomics to characterize synapse protein complexes and interaction networks. New tandem affinity purification (TAP) tags were fused to the carboxyl terminus of PSD‐95 using gene targeting in mice. Homozygous mice showed no detectable abnormalities in PSD‐95 expression, subcellular localization or synaptic electrophysiological function. Analysis of multiprotein complexes purified under native conditions by mass spectrometry defined known and new interactors: 118 proteins comprising crucial functional components of synapses, including glutamate receptors, K+ channels, scaffolding and signaling proteins, were recovered. Network clustering of protein interactions generated five connected clusters, with two clusters containing all the major ionotropic glutamate receptors and one cluster with voltage‐dependent K+ channels. Annotation of clusters with human disease associations revealed that multiple disorders map to the network, with a significant correlation of schizophrenia within the glutamate receptor clusters. This targeted TAP tagging strategy is generally applicable to mammalian proteomics and systems biology approaches to disease.


Nature Neuroscience | 2008

Evolutionary expansion and anatomical specialization of synapse proteome complexity

Richard D. Emes; Andrew Pocklington; Chris N. G. Anderson; Àlex Bayés; Mark O. Collins; Catherine Vickers; Mike D R Croning; Bilal R Malik; Jyoti S. Choudhary; J. Douglas Armstrong; Seth G. N. Grant

Understanding the origins and evolution of synapses may provide insight into species diversity and the organization of the brain. Using comparative proteomics and genomics, we examined the evolution of the postsynaptic density (PSD) and membrane-associated guanylate kinase (MAGUK)-associated signaling complexes (MASCs) that underlie learning and memory. PSD and MASC orthologs found in yeast carry out basic cellular functions to regulate protein synthesis and structural plasticity. We observed marked changes in signaling complexity at the yeast-metazoan and invertebrate-vertebrate boundaries, with an expansion of key synaptic components, notably receptors, adhesion/cytoskeletal proteins and scaffold proteins. A proteomic comparison of Drosophila and mouse MASCs revealed species-specific adaptation with greater signaling complexity in mouse. Although synaptic components were conserved amongst diverse vertebrate species, mapping mRNA and protein expression in the mouse brain showed that vertebrate-specific components preferentially contributed to differences between brain regions. We propose that the evolution of synapse complexity around a core proto-synapse has contributed to invertebrate-vertebrate differences and to brain specialization.


Molecular & Cellular Proteomics | 2008

Phosphoproteomic Analysis of the Mouse Brain Cytosol Reveals a Predominance of Protein Phosphorylation in Regions of Intrinsic Sequence Disorder

Mark O. Collins; Lu Yu; Iain D. G. Campuzano; Seth G. N. Grant; Jyoti S. Choudhary

We analyzed the mouse forebrain cytosolic phosphoproteome using sequential (protein and peptide) IMAC purifications, enzymatic dephosphorylation, and targeted tandem mass spectrometry analysis strategies. In total, using complementary phosphoenrichment and LC-MS/MS strategies, 512 phosphorylation sites on 540 non-redundant phosphopeptides from 162 cytosolic phosphoproteins were characterized. Analysis of protein domains and amino acid sequence composition of this data set of cytosolic phosphoproteins revealed that it is significantly enriched in intrinsic sequence disorder, and this enrichment is associated with both cellular location and phosphorylation status. The majority of phosphorylation sites found by MS were located outside of structural protein domains (97%) but were mostly located in regions of intrinsic sequence disorder (86%). 368 phosphorylation sites were located in long regions of disorder (over 40 amino acids long), and 94% of proteins contained at least one such long region of disorder. In addition, we found that 58 phosphorylation sites in this data set occur in 14-3-3 binding consensus motifs, linear motifs that are associated with unstructured regions in proteins. These results demonstrate that in this data set protein phosphorylation is significantly depleted in protein domains and significantly enriched in disordered protein sequences and that enrichment of intrinsic sequence disorder may be a common feature of phosphoproteomes. This supports the hypothesis that disordered regions in proteins allow kinases, phosphatases, and phosphorylation-dependent binding proteins to gain access to target sequences to regulate local protein conformation and activity.


Current Opinion in Biotechnology | 2008

Mapping multiprotein complexes by affinity purification and mass spectrometry

Mark O. Collins; Jyoti S. Choudhary

The combination of affinity purification and tandem mass spectrometry (MS) has emerged as a powerful approach to delineate biological processes. In particular, the use of epitope tags has allowed this approach to become scaleable and has bypassed difficulties associated with generation of antibodies. Single epitope tags and tandem affinity purification (TAP) tags have been used to systematically map protein complexes generating protein interaction data at a near proteome-wide scale. Recent developments in the design of tags, optimisation of purification conditions, experimental design and data analysis have greatly improved the sensitivity and specificity of this approach. Concomitant developments in MS, including high accuracy and high-throughput instrumentation together with quantitative MS methods, have facilitated large-scale and comprehensive analysis of multiprotein complexes.


Nature Cell Biology | 2011

APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment

Jörg Mansfeld; Philippe Collin; Mark O. Collins; Jyoti S. Choudhary; Jonathon Pines

Faithful chromosome segregation during mitosis depends on the spindle assembly checkpoint (SAC), which monitors kinetochore attachment to the mitotic spindle. Unattached kinetochores generate mitotic checkpoint proteins complexes (MCCs) that bind and inhibit the anaphase-promoting complex, or cyclosome (APC/C). How the SAC proficiently inhibits the APC/C but still allows its rapid activation when the last kinetochore attaches to the spindle is important for the understanding of how cells maintain genomic stability. We show that the APC/C subunit APC15 is required for the turnover of the APC/C co-activator CDC20 and release of MCCs during SAC signalling but not for APC/C activity per se. In the absence of APC15, MCCs and ubiquitylated CDC20 remain ‘locked’ onto the APC/C, which prevents the ubiquitylation and degradation of cyclin B1 when the SAC is satisfied. We conclude that APC15 mediates the constant turnover of CDC20 and MCCs on the APC/C to allow the SAC to respond to the attachment state of kinetochores.

Collaboration


Dive into the Mark O. Collins's collaboration.

Top Co-Authors

Avatar

Jyoti S. Choudhary

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lu Yu

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Mike D R Croning

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Àlex Bayés

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian C. Rayner

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Esperanza Fernández

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge