Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark R. Southern is active.

Publication


Featured researches published by Mark R. Southern.


Journal of Biomolecular Screening | 2011

BioAssay Ontology Annotations Facilitate Cross-Analysis of Diverse High-Throughput Screening Data Sets

Stephan C. Schürer; Uma D. Vempati; Robin P. Smith; Mark R. Southern; Vance Lemmon

High-throughput screening data repositories, such as PubChem, represent valuable resources for the development of small-molecule chemical probes and can serve as entry points for drug discovery programs. Although the loose data format offered by PubChem allows for great flexibility, important annotations, such as the assay format and technologies employed, are not explicitly indexed. The authors have previously developed a BioAssay Ontology (BAO) and curated more than 350 assays with standardized BAO terms. Here they describe the use of BAO annotations to analyze a large set of assays that employ luciferase- and β-lactamase–based technologies. They identified promiscuous chemotypes pertaining to different subcategories of assays and specific mechanisms by which these chemotypes interfere in reporter gene assays. Results show that the data in PubChem can be used to identify promiscuous compounds that interfere nonspecifically with particular technologies. Furthermore, they show that BAO is a valuable toolset for the identification of related assays and for the systematic generation of insights that are beyond the scope of individual assays or screening campaigns.


Journal of Biomolecular Screening | 2007

Comparison of Miniaturized Time-Resolved Fluorescence Resonance Energy Transfer and Enzyme-Coupled Luciferase High-Throughput Screening Assays to Discover Inhibitors of Rho-Kinase II (ROCK-II)

Thomas Schröter; Dmitriy Minond; Amiee Weiser; Chinh Dao; Jeff Habel; Timothy P. Spicer; Peter Chase; Pierre Baillargeon; Louis Scampavia; Stephan C. Schürer; Caty Chung; Christopher Mader; Mark R. Southern; Nick Tsinoremas; Philip V. LoGrasso; Peter Hodder

Kinases are important drug discovery targets for a wide variety of therapeutic indications; consequently, the measurement of kinase activity remains a common high-throughput screening (HTS) application. Recently, enzyme-coupled luciferase-kinase (LK) format assays have been introduced. This format measures luminescence resulting from metabolism of adenosine triphosphate (ATP) via a luciferin/luciferase-coupled reaction. In the research presented here, 1536-well format time-resolved fluorescence resonance energy transfer (TR-FRET) and LK assays were created to identify novel Rho-associated kinase II (ROCK-II) inhibitors. HTS campaigns for both assays were conducted in this miniaturized format. It was found that both assays were able to consistently reproduce the expected pharmacology of inhibitors known to be specific to ROCK-II (fasudil IC50: 283 ± 27 nM and 336 ± 54 nM for TR-FRET and LK assays, respectively; Y-27632 IC50: 133 ± 7.8 nM and 150 ± 22 nM for TR-FRET and LK assays, respectively). In addition, both assays proved robust for HTS efforts, demonstrating excellent plate Z′ values during the HTS campaign (0.84 ± 0.03; 0.72 ± 0.05 for LK and TR-FRET campaigns, respectively). Both formats identified scaffolds of known and novel ROCK-II inhibitors with similar sensitivity. A comparison of the performance of these 2 assay formats in an HTS campaign was enabled by the existence of a subset of 25,000 compounds found in both our institutional and the Molecular Library Screening Center Network screening files. Analysis of the HTS campaign results based on this subset of common compounds showed that both formats had comparable total hit rates, hit distributions, amount of hit clusters, and format-specific artifact. It can be concluded that both assay formats are suitable for the discovery of ROCK-II inhibitors, and the choice of assay format depends on reagents and/or screening technology available. (Journal of Biomolecular Screening 2008:17-28)


ACS Chemical Biology | 2015

Selective Inhibitor of Platelet-Activating Factor Acetylhydrolases 1b2 and 1b3 That Impairs Cancer Cell Survival

Jae Won Chang; Andrea M. Zuhl; Anna E Speers; Sherry Niessen; Steven J. Brown; Melinda M. Mulvihill; Yi Chiao Fan; Timothy P. Spicer; Mark R. Southern; Louis Scampavia; Virneliz Fernandez-Vega; Melissa M. Dix; Michael D. Cameron; Peter Hodder; Hugh Rosen; Daniel K. Nomura; Ohyun Kwon; Ku-Lung Hsu; Benjamin F. Cravatt

Platelet-activating factor acetylhydrolases (PAFAHs) 1b2 and 1b3 are poorly characterized serine hydrolases that form a complex with a noncatalytic protein (1b1) to regulate brain development, spermatogenesis, and cancer pathogenesis. Determining physiological substrates and biochemical functions for the PAFAH1b complex would benefit from selective chemical probes that can perturb its activity in living systems. Here, we report a class of tetrahydropyridine reversible inhibitors of PAFAH1b2/3 discovered using a fluorescence polarization-activity-based protein profiling (fluopol-ABPP) screen of the NIH 300,000+ compound library. The most potent of these agents, P11, exhibited IC50 values of ∼40 and 900 nM for PAFAH1b2 and 1b3, respectively. We confirm selective inhibition of PAFAH1b2/3 in cancer cells by P11 using an ABPP protocol adapted for in situ analysis of reversible inhibitors and show that this compound impairs tumor cell survival, supporting a role for PAFAH1b2/3 in cancer.


Journal of Biomolecular Screening | 2014

An Overview of the Challenges in Designing, Integrating, and Delivering BARD: A Public Chemical-Biology Resource and Query Portal for Multiple Organizations, Locations, and Disciplines

Andrea de Souza; Joshua Bittker; David L. Lahr; Steve Brudz; Simon Chatwin; Tudor I. Oprea; Anna Waller; Jeremy J. Yang; Noel Southall; Rajarshi Guha; Stephan C. Schürer; Uma D. Vempati; Mark R. Southern; Eric S. Dawson; Paul A. Clemons; Thomas Dy Chung

Recent industry–academic partnerships involve collaboration among disciplines, locations, and organizations using publicly funded “open-access” and proprietary commercial data sources. These require the effective integration of chemical and biological information from diverse data sources, which presents key informatics, personnel, and organizational challenges. The BioAssay Research Database (BARD) was conceived to address these challenges and serve as a community-wide resource and intuitive web portal for public-sector chemical-biology data. Its initial focus is to enable scientists to more effectively use the National Institutes of Health Roadmap Molecular Libraries Program (MLP) data generated from the 3-year pilot and 6-year production phases of the Molecular Libraries Probe Production Centers Network (MLPCN), which is currently in its final year. BARD evolves the current data standards through structured assay and result annotations that leverage BioAssay Ontology and other industry-standard ontologies, and a core hierarchy of assay definition terms and data standards defined specifically for small-molecule assay data. We initially focused on migrating the highest-value MLP data into BARD and bringing it up to this new standard. We review the technical and organizational challenges overcome by the interdisciplinary BARD team, veterans of public- and private-sector data-integration projects, who are collaborating to describe (functional specifications), design (technical specifications), and implement this next-generation software solution.


ACS Chemical Biology | 2016

Inforna 2.0: A Platform for the Sequence-Based Design of Small Molecules Targeting Structured RNAs

Matthew D. Disney; Audrey M. Winkelsas; Sai Pradeep Velagapudi; Mark R. Southern; Mohammad Fallahi; Jessica L. Childs-Disney

The development of small molecules that target RNA is challenging yet, if successful, could advance the development of chemical probes to study RNA function or precision therapeutics to treat RNA-mediated disease. Previously, we described Inforna, an approach that can mine motifs (secondary structures) within target RNAs, which is deduced from the RNA sequence, and compare them to a database of known RNA motif-small molecule binding partners. Output generated by Inforna includes the motif found in both the database and the desired RNA target, lead small molecules for that target, and other related meta-data. Lead small molecules can then be tested for binding and affecting cellular (dys)function. Herein, we describe Inforna 2.0, which incorporates all known RNA motif-small molecule binding partners reported in the scientific literature, a chemical similarity searching feature, and an improved user interface and is freely available via an online web server. By incorporation of interactions identified by other laboratories, the database has been doubled, containing 1936 RNA motif-small molecule interactions, including 244 unique small molecules and 1331 motifs. Interestingly, chemotype analysis of the compounds that bind RNA in the database reveals features in small molecule chemotypes that are privileged for binding. Further, this updated database expanded the number of cellular RNAs to which lead compounds can be identified.


Bioinformatics | 2012

PubChem promiscuity

Stephanie A. Canny; Yasel Cruz; Mark R. Southern; Patrick R. Griffin

SUMMARY Promiscuity counts allow for a better understanding of a compounds assay activity profile and drug potential. Although PubChem contains a vast amount of compound and assay data, it currently does not have a convenient or efficient method to obtain in-depth promiscuity counts for compounds. PubChem promiscuity fills this gap. It is a Java servlet that uses NCBI Entrez (eUtils) web services to interact with PubChem and provide promiscuity counts in a variety of categories along with compound descriptors, including PAINS-based functional group detection. AVAILABILITY http://chemutils.florida.scripps.edu/pcpromiscuity CONTACT [email protected]


Nucleic Acids Research | 2015

BioAssay Research Database (BARD): chemical biology and probe-development enabled by structured metadata and result types.

E. A. Howe; A. de Souza; David L. Lahr; S. Chatwin; Philip Montgomery; Benjamin Alexander; Dac-Trung Nguyen; Yasel Cruz; D. A. Stonich; G. Walzer; J. T. Rose; S. C. Picard; Zihan Liu; J. N. Rose; X. Xiang; Jacob K. Asiedu; D. Durkin; J. Levine; Jeremy J. Yang; Stephan C. Schürer; John C. Braisted; Noel Southall; Mark R. Southern; Thomas Dy Chung; Steve Brudz; Cordelle Tanega; Stuart L. Schreiber; Joshua Bittker; Rajarshi Guha; Paul A. Clemons

BARD, the BioAssay Research Database (https://bard.nih.gov/) is a public database and suite of tools developed to provide access to bioassay data produced by the NIH Molecular Libraries Program (MLP). Data from 631 MLP projects were migrated to a new structured vocabulary designed to capture bioassay data in a formalized manner, with particular emphasis placed on the description of assay protocols. New data can be submitted to BARD with a user-friendly set of tools that assist in the creation of appropriately formatted datasets and assay definitions. Data published through the BARD application program interface (API) can be accessed by researchers using web-based query tools or a desktop client. Third-party developers wishing to create new tools can use the API to produce stand-alone tools or new plug-ins that can be integrated into BARD. The entire BARD suite of tools therefore supports three classes of researcher: those who wish to publish data, those who wish to mine data for testable hypotheses, and those in the developer community who wish to build tools that leverage this carefully curated chemical biology resource.


Proceedings of the National Academy of Sciences of the United States of America | 2014

CRTC1/MAML2 gain-of-function interactions with MYC create a gene signature predictive of cancers with CREB–MYC involvement

Antonio L. Amelio; Mohammad Fallahi; Franz X. Schaub; Min Zhang; Mariam B. Lawani; Adam S. Alperstein; Mark R. Southern; Brandon Young; Lizi Wu; Maria Zajac-Kaye; Frederic J. Kaye; John L. Cleveland; Michael D. Conkright

Significance The prevailing dogma since the identification of the t (11, 19) translocation gene product as a fusion of the cAMP response element binding protein (CREB)-regulated transcriptional coactivator 1 (CRTC1) and the NOTCH coactivator mastermind-like 2 (MAML2) in malignant salivary gland tumors has been that aberrant activation of CREB and/or NOTCH transcription programs drives oncogenesis. However, combined expression of the parental coactivator molecules CRTC1 and MAML2 is not sufficient to induce transformation, suggesting an added level of complexity. Here we describe gain-of-function interactions between the CRTC1/MAML2 (C1/M2) coactivator fusion and myelocytomatosis oncogene (MYC) oncoproteins that are necessary for C1/M2-driven transformation. Our findings suggest that targeting the C1/M2–MYC interface represents an attractive strategy for the development of effective and safe anticancer therapeutics in tumors harboring the t (11, 19) translocation. Chimeric oncoproteins created by chromosomal translocations are among the most common genetic mutations associated with tumorigenesis. Malignant mucoepidermoid salivary gland tumors, as well as a growing number of solid epithelial-derived tumors, can arise from a recurrent t (11, 19)(q21;p13.1) translocation that generates an unusual chimeric cAMP response element binding protein (CREB)-regulated transcriptional coactivator 1 (CRTC1)/mastermind-like 2 (MAML2) (C1/M2) oncoprotein comprised of two transcriptional coactivators, the CRTC1 and the NOTCH/RBPJ coactivator MAML2. Accordingly, the C1/M2 oncoprotein induces aberrant expression of CREB and NOTCH target genes. Surprisingly, here we report a gain-of-function activity of the C1/M2 oncoprotein that directs its interactions with myelocytomatosis oncogene (MYC) proteins and the activation of MYC transcription targets, including those involved in cell growth and metabolism, survival, and tumorigenesis. These results were validated in human mucoepidermoid tumor cells that harbor the t (11, 19)(q21;p13.1) translocation and express the C1/M2 oncoprotein. Notably, the C1/M2–MYC interaction is necessary for C1/M2-driven cell transformation, and the C1/M2 transcriptional signature predicts other human malignancies having combined involvement of MYC and CREB. These findings suggest that such gain-of-function properties may also be manifest in other oncoprotein fusions found in human cancer and that agents targeting the C1/M2–MYC interface represent an attractive strategy for the development of effective and safe anticancer therapeutics in tumors harboring the t (11, 19) translocation.


Structure | 2013

Improved Crystallographic Structures Using Extensive Combinatorial Refinement

Jerome C. Nwachukwu; Mark R. Southern; James R. Kiefer; Pavel V. Afonine; Paul D. Adams; Thomas C. Terwilliger; Kendall W. Nettles

Identifying errors and alternate conformers and modeling multiple main-chain conformers in poorly ordered regions are overarching problems in crystallographic structure determination that have limited automation efforts and structure quality. Here, we show that implementation of a full factorial designed set of standard refinement approaches, termed ExCoR (Extensive Combinatorial Refinement), significantly improves structural models compared to the traditional linear tree approach, in which individual algorithms are tested linearly and are only incorporated if the model improves. ExCoR markedly improved maps and models and reveals building errors and alternate conformations that were masked by traditional refinement approaches. Surprisingly, an individual algorithm that renders a model worse in isolation could still be necessary to produce the best overall model, suggesting that model distortion allows escape from local minima of optimization target function, here shown to be a hallmark limitation of the traditional approach. ExCoR thus provides a simple approach to improving structure determination.


Nature Communications | 2016

Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10

Wang Yong Yang; Rui Gao; Mark R. Southern; Partha S. Sarkar; Matthew D. Disney

RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells.

Collaboration


Dive into the Mark R. Southern's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew D. Disney

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio L. Amelio

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Brandon Young

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Bruce D. Pascal

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy J. Yang

University of New Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge