Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Simons is active.

Publication


Featured researches published by Mark Simons.


Science | 2011

The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries

Mark Simons; Sarah E. Minson; Anthony Sladen; Francisco Ortega; J. H. Jiang; S. E. Owen; Lingsen Meng; Jean-Paul Ampuero; Shengji Wei; Risheng Chu; Donald V. Helmberger; Hiroo Kanamori; Eric Hetland; Angelyn W. Moore; Frank H. Webb

Detailed geophysical measurements reveal features of the 2011 Tohoku-Oki megathrust earthquake. Geophysical observations from the 2011 moment magnitude (Mw) 9.0 Tohoku-Oki, Japan earthquake allow exploration of a rare large event along a subduction megathrust. Models for this event indicate that the distribution of coseismic fault slip exceeded 50 meters in places. Sources of high-frequency seismic waves delineate the edges of the deepest portions of coseismic slip and do not simply correlate with the locations of peak slip. Relative to the Mw 8.8 2010 Maule, Chile earthquake, the Tohoku-Oki earthquake was deficient in high-frequency seismic radiation—a difference that we attribute to its relatively shallow depth. Estimates of total fault slip and surface secular strain accumulation on millennial time scales suggest the need to consider the potential for a future large earthquake just south of this event.


Eos, Transactions American Geophysical Union | 2004

Updated repeat orbit interferometry package released

Paul A. Rosen; Scott Hensley; Gilles Peltzer; Mark Simons

RO1_PAC V2.3, a Repeat Orbit Interferometry package that allows topographic and surface change researchers to apply Interferometric Synthetic Aperture Radar (InSAR) methods, is now freely available to the community InSAR is the synthesis of conventional SAR and interferometry techniques that have been developed over several decades in radio astronomy and radar remote sensing. In recent years, it has opened entirely new application areas for radar in the Earth system sciences, including topographic mapping and geodesy. RO1_PAC, developed primarily to work with European Remote Sensing (ERS) satellite radar data, currently supports ERS-1, ERS-2, and Japanese Earth Resources Satellite (JERS) radar data, and is configurable to work with “strip-mode” data from all existing satellite radar instruments. The first release of RO1_ PAC (V1.0) was made quietly in 2000, and roughly 30 groups in the academic and research community currently use it.


Science | 2006

Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra

Ya-Ju Hsu; Mark Simons; Jean-Philippe Avouac; John Galetzka; Kerry Sieh; M. Chlieh; Danny Hilman Natawidjaja; Linette Miriawati Prawirodirdjo; Yehuda Bock

Continuously recording Global Positioning System stations near the 28 March 2005 rupture of the Sunda megathrust [moment magnitude (Mw) 8.7] show that the earthquake triggered aseismic frictional afterslip on the subduction megathrust, with a major fraction of this slip in the up-dip direction from the main rupture. Eleven months after the main shock, afterslip continues at rates several times the average interseismic rate, resulting in deformation equivalent to at least a Mw 8.2 earthquake. In general, along-strike variations in frictional behavior appear to persist over multiple earthquake cycles. Aftershocks cluster along the boundary between the region of coseismic slip and the up-dip creeping zone. We observe that the cumulative number of aftershocks increases linearly with postseismic displacements; this finding suggests that the temporal evolution of aftershocks is governed by afterslip.


Journal of Geophysical Research | 2002

Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution

Patrick J. McGovern; Sean C. Solomon; David E. Smith; Maria T. Zuber; Mark Simons; Mark A. Wieczorek; Roger J. Phillips; Gregory A. Neumann; Oded Aharonson; James W. Head

From gravity and topography data collected by the Mars Global Surveyor spacecraft we calculate gravity/topography admittances and correlations in the spectral domain and compare them to those predicted from models of lithospheric flexure. On the basis of these comparisons we estimate the thickness of the Martian elastic lithosphere (T_e) required to support the observed topographic load since the time of loading. We convert T_e to estimates of heat flux and thermal gradient in the lithosphere through a consideration of the response of an elastic/plastic shell. In regions of high topography on Mars (e.g., the Tharsis rise and associated shield volcanoes), the mass-sheet (small-amplitude) approximation for the calculation of gravity from topography is inadequate. A correction that accounts for finite-amplitude topography tends to increase the amplitude of the predicted gravity signal at spacecraft altitudes. Proper implementation of this correction requires the use of radii from the center of mass (collectively known as the planetary “shape”) in lieu of “topography” referenced to a gravitational equipotential. Anomalously dense surface layers or buried excess masses are not required to explain the observed admittances for the Tharsis Montes or Olympus Mons volcanoes when this correction is applied. Derived T_e values generally decrease with increasing age of the lithospheric load, in a manner consistent with a rapid decline of mantle heat flux during the Noachian and more modest rates of decline during subsequent epochs.


Bulletin of the Seismological Society of America | 2002

Coseismic Deformation from the 1999 Mw 7.1 Hector Mine, California, Earthquake as Inferred from InSAR and GPS Observations

Mark Simons; Yuri Fialko; Luis Rivera

We use interferometric synthetic aperture radar (InSAR) and Global Positioning System (GPS) observations to investigate static deformation due to the 1999 M_w 7.1 Hector Mine earthquake, that occurred in the eastern California shear zone. Interferometric decorrelation, phase, and azimuth offset measurements indicate regions of surface and near-surface slip, which we use to constrain the geometry of surface rupture. The inferred geometry is spatially complex, with multiple strands. The southern third of the rupture zone consists of three subparallel segments extending about 20 km in length in a N45°W direction. The central segment is the simplest, with a single strand crossing the Bullion Mountains and a strike of N10°W. The northern third of the rupture zone is characterized by multiple splays, with directions subparallel to strikes in the southern and central. The average strike for the entire rupture is about N30°W. The interferograms indicate significant along-strike variations in strain which are consistent with variations in the ground-based slip measurements. Using a variable resolution data sampling routine to reduce the computational burden, we invert the InSAR and GPS data for the fault geometry and distribution of slip. We compare results from assuming an elastic half-space and a layered elastic space. Results from these two elastic models are similar, although the layered-space model predicts more slip at depth than does the half-space model. The layered model predicts a maximum coseismic slip of more than 5 m at a depth of 3 to 6 km. Contrary to preliminary reports, the northern part of the Hector Mine rupture accommodates the maximum slip. Our model predictions for the surface fault offset and total seismic moment agree with both field mapping results and recent seismic models. The inferred shallow slip deficit is enigmatic and may suggest that distributed inelastic yielding occurred in the uppermost few kilometers of the crust during or soon after the earthquake.


Geophysical Research Letters | 2001

The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw7.1 Hector Mine earthquake, California, from space geodetic observations

Yuri Fialko; Mark Simons; Duncan Carr Agnew

We use Interferometric Synthetic Aperture Radar (InSAR) data to derive continuous maps for three orthogonal components of the co-seismic surface displacement field due to the 1999 M_w7.1 Hector Mine earthquake in southern California. Vertical and horizontal displacements are both predominantly antisymmetric with respect to the fault plane, consistent with predictions of linear elastic models of deformation for a strike-slip fault. Some deviations from symmetry apparent in the surface displacement data may result from complexity in the fault geometry.


Science | 2006

Deformation and Slip Along the Sunda Megathrust in the Great 2005 Nias-Simeulue Earthquake

Richard W. Briggs; Kerry Sieh; Aron J. Meltzner; Danny Hilman Natawidjaja; John Galetzka; Bambang W. Suwargadi; Ya-Ju Hsu; Mark Simons; Nugroho D. Hananto; Imam Suprihanto; Dudi Prayudi; Jean-Philippe Avouac; Linette Miriawati Prawirodirdjo; Yehuda Bock

Seismic rupture produced spectacular tectonic deformation above a 400-kilometer strip of the Sunda megathrust, offshore northern Sumatra, in March 2005. Measurements from coral microatolls and Global Positioning System stations reveal trench-parallel belts of uplift up to 3 meters high on the outer-arc islands above the rupture and a 1-meter-deep subsidence trough farther from the trench. Surface deformation reflects more than 11 meters of fault slip under the islands and a pronounced lessening of slip trenchward. A saddle in megathrust slip separates the northwestern edge of the 2005 rupture from the great 2004 Sumatra-Andaman rupture. The southeastern edge abuts a predominantly aseismic section of the megathrust near the equator.


Nature | 2005

Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit

Yuri Fialko; David T. Sandwell; Mark Simons; Paul A. Rosen

Our understanding of the earthquake process requires detailed insights into how the tectonic stresses are accumulated and released on seismogenic faults. We derive the full vector displacement field due to the Bam, Iran, earthquake of moment magnitude 6.5 using radar data from the Envisat satellite of the European Space Agency. Analysis of surface deformation indicates that most of the seismic moment release along the 20-km-long strike-slip rupture occurred at a shallow depth of 4–5 km, yet the rupture did not break the surface. The Bam event may therefore represent an end-member case of the ‘shallow slip deficit’ model, which postulates that coseismic slip in the uppermost crust is systematically less than that at seismogenic depths (4–10 km). The InSAR-derived surface displacement data from the Bam and other large shallow earthquakes suggest that the uppermost section of the seismogenic crust around young and developing faults may undergo a distributed failure in the interseismic period, thereby accumulating little elastic strain.


Geochemistry Geophysics Geosystems | 2005

Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling

Rowena B. Lohman; Mark Simons

Repeat-pass Interferometric Synthetic Aperture Radar (InSAR) provides spatially dense maps of surface deformation with potentially tens of millions of data points. Here we estimate the actual covariance structure of noise in InSAR data. We compare the results for several independent interferograms with a large ensemble of GPS observations of tropospheric delay and discuss how the common approaches used during processing of InSAR data affects the inferred covariance structure. Motivated by computational concerns associated with numerical modeling of deformation sources, we then combine the data-covariance information with the inherent resolution of an assumed source model to develop an efficient algorithm for spatially variable data resampling (or averaging). We illustrate these technical developments with two earthquake scenarios at different ends of the earthquake magnitude spectrum. For the larger events, our goal is to invert for the coseismic fault slip distribution. For smaller events, we infer the hypocenter location and moment. We compare the results of inversions using several different resampling algorithms, and we assess the importance of using the full noise covariance matrix.


Nature | 2002

A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes

M. E. Pritchard; Mark Simons

Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Stratovolcanoes tend to exhibit a complex relationship between deformation and eruptive behaviour. The characteristically long time spans between such eruptions requires a long time series of observations to determine whether deformation without an eruption is common at a given edifice. Such studies, however, are logistically difficult to carry out in most volcanic arcs, as these tend to be remote regions with large numbers of volcanoes (hundreds to even thousands). Here we present a satellite-based interferometric synthetic aperture radar (InSAR) survey of the remote central Andes volcanic arc, a region formed by subduction of the Nazca oceanic plate beneath continental South America. Spanning the years 1992 to 2000, our survey reveals the background level of activity of about 900 volcanoes, 50 of which have been classified as potentially active. We find four centres of broad (tens of kilometres wide), roughly axisymmetric surface deformation. None of these centres are at volcanoes currently classified as potentially active, although two lie within about 10 km of volcanoes with known activity. Source depths inferred from the patterns of deformation lie between 5 and 17 km. In contrast to the four new sources found, we do not observe any deformation associated with recent eruptions of Lascar, Chile.

Collaboration


Dive into the Mark Simons's collaboration.

Top Co-Authors

Avatar

Frank H. Webb

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. E. Owen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eric J. Fielding

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean C. Solomon

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Piyush Agram

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Anthony Sladen

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Jean-Philippe Avouac

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bryan Riel

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Pietro Milillo

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge