Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark W. J. van Passel is active.

Publication


Featured researches published by Mark W. J. van Passel.


PLOS ONE | 2012

CRISPR Interference Directs Strand Specific Spacer Acquisition

Daan C. Swarts; Cas Mosterd; Mark W. J. van Passel; Stan J. J. Brouns

Background CRISPR/Cas is a widespread adaptive immune system in prokaryotes. This system integrates short stretches of DNA derived from invading nucleic acids into genomic CRISPR loci, which function as memory of previously encountered invaders. In Escherichia coli, transcripts of these loci are cleaved into small RNAs and utilized by the Cascade complex to bind invader DNA, which is then likely degraded by Cas3 during CRISPR interference. Results We describe how a CRISPR-activated E. coli K12 is cured from a high copy number plasmid under non-selective conditions in a CRISPR-mediated way. Cured clones integrated at least one up to five anti-plasmid spacers in genomic CRISPR loci. New spacers are integrated directly downstream of the leader sequence. The spacers are non-randomly selected to target protospacers with an AAG protospacer adjacent motif, which is located directly upstream of the protospacer. A co-occurrence of PAM deviations and CRISPR repeat mutations was observed, indicating that one nucleotide from the PAM is incorporated as the last nucleotide of the repeat during integration of a new spacer. When multiple spacers were integrated in a single clone, all spacer targeted the same strand of the plasmid, implying that CRISPR interference caused by the first integrated spacer directs subsequent spacer acquisition events in a strand specific manner. Conclusions The E. coli Type I-E CRISPR/Cas system provides resistance against bacteriophage infection, but also enables removal of residing plasmids. We established that there is a positive feedback loop between active spacers in a cluster – in our case the first acquired spacer - and spacers acquired thereafter, possibly through the use of specific DNA degradation products of the CRISPR interference machinery by the CRISPR adaptation machinery. This loop enables a rapid expansion of the spacer repertoire against an actively present DNA element that is already targeted, amplifying the CRISPR interference effect.


PLOS ONE | 2011

The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes.

Mark W. J. van Passel; Ravi Kant; Erwin G. Zoetendal; Caroline M. Plugge; Muriel Derrien; Stephanie Malfatti; Patrick Chain; Tanja Woyke; Airi Palva; Willem M. de Vos; Hauke Smidt

Background The human gastrointestinal tract contains a complex community of microbes, fulfilling important health-promoting functions. However, this vast complexity of species hampers the assignment of responsible organisms to these functions. Recently, Akkermansia muciniphila, a new species from the deeply branched phylum Verrucomicrobia, was isolated from the human intestinal tract based on its capacity to efficiently use mucus as a carbon and nitrogen source. This anaerobic resident is associated with the protective mucus lining of the intestines. Methodology/Principal Findings In order to uncover the functional potential of A. muciniphila, its genome was sequenced and annotated. It was found to contain numerous candidate mucinase-encoding genes, but lacking genes encoding canonical mucus-binding domains. Numerous phage-associated sequences found throughout the genome indicate that viruses have played an important part in the evolution of this species. Furthermore, we mined 37 GI tract metagenomes for the presence, and genetic diversity of Akkermansia sequences. Out of 37, eleven contained 16S ribosomal RNA gene sequences that are >95% identical to that of A. muciniphila. In addition, these libraries were found to contain large amounts of Akkermansia DNA based on average nucleotide identity scores, which indicated in one subject co-colonization by different Akkermansia phylotypes. An additional 12 libraries also contained Akkermansia sequences, making a total of ∼16 Mbp of new Akkermansia pangenomic DNA. The relative abundance of Akkermansia DNA varied between <0.01% to nearly 4% of the assembled metagenomic reads. Finally, by testing a large collection of full length 16S sequences, we find at least eight different representative species in the genus Akkermansia. Conclusions/Significance These large repositories allow us to further mine for genetic heterogeneity and species diversity in the genus Akkermansia, providing novel insight towards the functionality of this abundant inhabitant of the human intestinal tract.


PLOS ONE | 2011

Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose

José Miguel P. Ferreira de Oliveira; Mark W. J. van Passel; Peter J. Schaap; Leo H. de Graaff

Fungi utilize polysaccharide substrates through extracellular digestion catalyzed by secreted enzymes. Thus far, protein secretion by the filamentous fungus Aspergillus niger has mainly been studied at the level of individual proteins and by genome and transcriptome analyses. To extend these studies, a complementary proteomics approach was applied with the aim to investigate the changes in secretome and microsomal protein composition resulting from a shift to a high level secretion condition. During growth of A. niger on d-sorbitol, small amounts of d-maltose or d-xylose were used as inducers of the extracellular amylolytic and xylanolytic enzymes. Upon induction, protein compositions in the extracellular broth as well as in enriched secretory organelle (microsomal) fractions were analyzed using a shotgun proteomics approach. In total 102 secreted proteins and 1,126 microsomal proteins were identified in this study. Induction by d-maltose or d-xylose resulted in the increase in specific extracellular enzymes, such as glucoamylase A on d-maltose and β-xylosidase D on d-xylose, as well as of microsomal proteins. This reflects the differential expression of selected genes coding for dedicated extracellular enzymes. As expected, the addition of extra d-sorbitol had no effect on the expression of carbohydrate-active enzymes, compared to addition of d-xylose or d-maltose. Furthermore, d-maltose induction caused an increase in microsomal proteins related to translation (e.g., Rpl15) and vesicular transport (e.g., the endosomal-cargo receptor Erv14). Millimolar amounts of the inducers d-maltose and d-xylose are sufficient to cause a direct response in specific protein expression levels. Also, after induction by d-maltose or d-xylose, the induced enzymes were found in microsomes and extracellular. In agreement with our previous findings for d-xylose induction, d-maltose induction leads to recruitment of proteins involved in proteasome-mediated degradation.


BMC Genomics | 2006

Compositional discordance between prokaryotic plasmids and host chromosomes

Mark W. J. van Passel; Aldert Bart; Angela C. M. Luyf; Antoine H. C. van Kampen; Arie van der Ende

BackgroundMost plasmids depend on the host replication machinery and possess partitioning genes. These properties confine plasmids to a limited range of hosts, yielding a close and presumably stable relationship between plasmid and host. Hence, it is anticipated that due to amelioration the dinucleotide composition of plasmids is similar to that of the genome of their hosts. However, plasmids are also thought to play a major role in horizontal gene transfer and thus are frequently exchanged between hosts, suggesting dinucleotide composition dissimilarity between plasmid and host genome. We compared the dinucleotide composition of a large collection of plasmids with that of their host genomes to shed more light on this enigma.ResultsThe dinucleotide frequency, coined the genome signature, facilitates the identification of putative horizontally transferred DNA in complete genome sequences, since it was found to be typical for a certain genome, and similar between related species. By comparison of the genome signature of 230 plasmid sequences with that of the genome of each respective host, we found that in general the genome signature of plasmids is dissimilar from that of their host genome.ConclusionOur results show that the genome signature of plasmids does not resemble that of their host genome. This indicates either absence of amelioration or a less stable relationship between plasmids and their host. We propose an indiscriminate lifestyle for plasmids preserving the genome signature discordance between these episomes and host chromosomes.


Journal of Antimicrobial Chemotherapy | 2014

Effects of selective digestive decontamination (SDD) on the gut resistome

Elena Buelow; Teresita de Jesus Bello Gonzalez; Dennis Versluis; Evelien A. N. Oostdijk; Lesley A. Ogilvie; Maaike S. M. van Mourik; Els Oosterink; Mark W. J. van Passel; Hauke Smidt; Marco Maria D'Andrea; Mark de Been; Brian V. Jones; Rob J. L. Willems; Marc J. M. Bonten; Willem van Schaik

OBJECTIVES Selective digestive decontamination (SDD) is an infection prevention measure for critically ill patients in intensive care units (ICUs) that aims to eradicate opportunistic pathogens from the oropharynx and intestines, while sparing the anaerobic flora, by the application of non-absorbable antibiotics. Selection for antibiotic-resistant bacteria is still a major concern for SDD. We therefore studied the impact of SDD on the reservoir of antibiotic resistance genes (i.e. the resistome) by culture-independent approaches. METHODS We evaluated the impact of SDD on the gut microbiota and resistome in a single ICU patient during and after an ICU stay by several metagenomic approaches. We also determined by quantitative PCR the relative abundance of two common aminoglycoside resistance genes in longitudinally collected samples from 12 additional ICU patients who received SDD. RESULTS The patient microbiota was highly dynamic during the hospital stay. The abundance of antibiotic resistance genes more than doubled during SDD use, mainly due to a 6.7-fold increase in aminoglycoside resistance genes, in particular aph(2″)-Ib and an aadE-like gene. We show that aph(2″)-Ib is harboured by anaerobic gut commensals and is associated with mobile genetic elements. In longitudinal samples of 12 ICU patients, the dynamics of these two genes ranged from a ∼10(4) fold increase to a ∼10(-10) fold decrease in relative abundance during SDD. CONCLUSIONS ICU hospitalization and the simultaneous application of SDD has large, but highly individualized, effects on the gut resistome of ICU patients. Selection for transferable antibiotic resistance genes in anaerobic commensal bacteria could impact the risk of transfer of antibiotic resistance genes to opportunistic pathogens.


Applied and Environmental Microbiology | 2010

Shotgun proteomics of Aspergillus niger microsomes upon D-xylose induction.

José Miguel P. Ferreira de Oliveira; Mark W. J. van Passel; Peter J. Schaap; Leo H. de Graaff

ABSTRACT Protein secretion plays an eminent role in cell maintenance and adaptation to the extracellular environment of microorganisms. Although protein secretion is an extremely efficient process in filamentous fungi, the mechanisms underlying protein secretion have remained largely uncharacterized in these organisms. In this study, we analyzed the effects of the d-xylose induction of cellulase and hemicellulase enzyme secretion on the protein composition of secretory organelles in Aspergillus niger. We aimed to systematically identify the components involved in the secretion of these enzymes via mass spectrometry of enriched subcellular microsomal fractions. Under each condition, fractions enriched for secretory organelles were processed for tandem mass spectrometry, resulting in the identification of peptides that originate from 1,081 proteins, 254 of which—many of them hypothetical proteins—were predicted to play direct roles in the secretory pathway. d-Xylose induction led to an increase in specific small GTPases known to be associated with polarized growth, exocytosis, and endocytosis. Moreover, the endoplasmic-reticulum-associated degradation (ERAD) components Cdc48 and all 14 of the 20S proteasomal subunits were recruited to the secretory organelles. In conclusion, induction of extracellular enzymes results in specific changes in the secretory subproteome of A. niger, and the most prominent change found in this study was the recruitment of the 20S proteasomal subunits to the secretory organelles.


Environmental Microbiology Reports | 2012

Metagenome analysis reveals yet unexplored reductive dechlorinating potential of Dehalobacter sp. E1 growing in co‐culture with Sedimentibacter sp.

Farai Maphosa; Mark W. J. van Passel; Willem M. de Vos; Hauke Smidt

The importance of Dehalobacter species in bioremediation as dedicated degraders of chlorinated organics has been well recognized. However, still little is known about Dehalobacters full genomic repertoires, including the genes involved in dehalogenation. Here we report the first insights into the genome sequence of Dehalobacter sp. E1 that grows in strict co-culture with Sedimentibacter sp. B4. Based on the co-culture metagenome and the genome of strain B4 (4.2 Mbp) we estimate the genome sequence of strain E1 to be 2.6 Mbp. Ten putative reductive dehalogenase homologue (Rdh)-encoding gene clusters were identified. One cluster has a putative tetrachloroethene Rdh-encoding gene cluster, similar to the pceABCT operon previously identified in Dehalobacter restrictus. Metagenome analysis indicated that the inability of strain E1 to synthesize cobalamin, an essential cofactor of reductive dehalogenases, is complemented by Sedimentibacter. The metagenomic exploration described here maps the extensive dechlorinating potential of Dehalobacter, and paves way for elucidation of the interactions with its co-cultured Sedimentibacter.


Trends in Microbiology | 2015

Rates of Lateral Gene Transfer in Prokaryotes: High but Why?

Michiel Vos; Matthijn C Hesselman; Tim A. H. te Beek; Mark W. J. van Passel; Adam Eyre-Walker

Lateral gene transfer is of fundamental importance to the evolution of prokaryote genomes and has important practical consequences, as evidenced by the rapid dissemination of antibiotic resistance and virulence determinants. Relatively little effort has so far been devoted to explicitly quantifying the rate at which accessory genes are taken up and lost, but it is possible that the combined rate of lateral gene transfer and gene loss is higher than that of point mutation. What evolutionary forces underlie the rate of lateral gene transfer are not well understood. We here use theory developed to explain the evolution of mutation rates to address this question and explore its consequences for the study of prokaryote evolution.


Environmental Microbiology | 2012

Random and cyclical deletion of large DNA segments in the genome of Pseudomonas putida

Audrey Leprince; Víctor de Lorenzo; Petra Völler; Mark W. J. van Passel; Vitor A. P. Martins dos Santos

Cumulative site-directed mutagenesis is of limited suitability for the global analysis of the gene functions in the microbes cellular network. In order to simplify and stabilize the genome of the soil bacterium Pseudomonas putida, we developed a recyclable three-step excision method based on the combination of customized mini-transposons and the FLP-FRT site-specific recombination system. To demonstrate the powerful potential of these tools, we first established insertion mutant libraries that allow users to study gene functions with respect either to phenotypic characteristics (single insertions) or to their involvement in predicted networks (double insertions). Based on these libraries, we generated as a proof-of-principle, single-deletion mutants lacking ∼ 4.1% of the genome (∼ 3.7% of the gene repertoire). A cyclical application of the method generated four double-deletion mutants of which a maximum of ∼ 7.4% of the chromosome (∼ 6.9% of the gene count) was excised. This procedure demonstrates a new strategy for rapid genome streamlining and gain of new insights into the molecular interactions and regulations.


Journal of Bacteriology | 2011

Genome Sequence of the Verrucomicrobium Opitutus terrae PB90-1, an Abundant Inhabitant of Rice Paddy Soil Ecosystems

Mark W. J. van Passel; Ravi Kant; Airi Palva; Alex Copeland; Susan Lucas; Alla Lapidus; Tijana Glavina del Rio; Sam Pitluck; Eugene Goltsman; Alicia Clum; Hui Sun; Jeremy Schmutz; Frank W. Larimer; Miriam Land; Loren Hauser; Nikolaos Kyrpides; Natalia Mikhailova; Paul Richardson; Peter H. Janssen; Willem M. de Vos; Hauke Smidt

Bacteria of the deeply branching phylum Verrucomicrobia are rarely cultured yet commonly detected in metagenomic libraries from aquatic, terrestrial, and intestinal environments. We have sequenced the genome of Opitutus terrae PB90-1, a fermentative anaerobe within this phylum, isolated from rice paddy soil and capable of propionate production from plant-derived polysaccharides.

Collaboration


Dive into the Mark W. J. van Passel's collaboration.

Top Co-Authors

Avatar

Hauke Smidt

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Willem M. de Vos

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Dennis Versluis

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Detmer Sipkema

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Teresita de Jesus Bello Gonzalez

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Airi Palva

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Ravi Kant

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Peter J. Schaap

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge