Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Wareing is active.

Publication


Featured researches published by Mark Wareing.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

Uterine Spiral Artery Remodeling Involves Endothelial Apoptosis Induced by Extravillous Trophoblasts Through Fas/FasL Interactions

Sandra Ashton; Guy Whitley; Philip R. Dash; Mark Wareing; Ian P. Crocker; Philip N. Baker; Judith E. Cartwright

Objective— Invasion of uterine spiral arteries by extravillous trophoblasts in the first trimester of pregnancy results in loss of endothelial and musculoelastic layers. This remodeling is crucial for an adequate blood supply to the fetus with a failure to remodel implicated in the etiology of the hypertensive disorder preeclampsia. The mechanism by which trophoblasts induce this key process is unknown. This study gives the first insights into the potential mechanisms involved. Methods and Results— Spiral arteries were dissected from nonplacental bed biopsies obtained at Caesarean section, and a novel model was used to mimic in vivo events. Arteries were cultured with trophoblasts in the lumen, and apoptotic changes in the endothelial layer were detected after 20 hours, leading to loss of endothelium by 96 hours. In vitro, coculture experiments showed that trophoblasts stimulated apoptosis of primary decidual endothelial cells and an endothelial cell line. This was blocked by caspase inhibition and NOK2, a FasL blocking antibody. NOK2 also abrogated trophoblast-induced endothelial apoptosis in the vessel model. Conclusions— Extravillous trophoblast induction of endothelial apoptosis is a possible mechanism by which the endothelium is removed, and vascular remodeling may occur in uterine spiral arteries. Fas/FasL interactions have an important role in trophoblast-induced endothelial apoptosis.


Placenta | 2011

Obesity and the placenta: A consideration of nutrient exchange mechanisms in relation to aberrant fetal growth

Lucy Higgins; Susan L. Greenwood; Mark Wareing; Colin P. Sibley; Tracey A. Mills

The obesity epidemic, including childhood obesity, is rapidly gaining strength as one of the most significant challenges to the health of the global community in the 21st Century. The proportion of women who are obese at the beginning of pregnancy is also increasing. These women and their babies are at high risk of pregnancy complications, and of programming for metabolic disease in adult life. In particular, maternal obesity is associated with aberrant fetal growth, encompassing both growth restricted and large for gestational age, or macrosomic fetuses. This article considers the potential effect of obesity and adipose tissue on placental nutrient exchange mechanisms in relation to aberrant fetal growth. The review emphasizes the dearth of work on this topic to date despite its importance to current and future healthcare of the population.


The Journal of Physiology | 2000

In vivo characterization of renal iron transport in the anaesthetized rat

Mark Wareing; Carole J. Ferguson; R Green; Daniela Riccardi; Craig P. Smith

1 In vivo microinjections of 55FeCl3 were made to assess renal iron (Fe2+/3+) transport in the anaesthetized rat. 2 Following microinjection into proximal convoluted tubules (PCTs), 18·5 ± 2·9 % (mean ± s.e.m., n= 11) of the 55Fe was recovered in the urine. This recovery was not dependent on the injection site indicating that iron is not reabsorbed across the surface convolutions of the proximal tubule. 3 Following microinjection into distal convoluted tubules (DCTs) 46·1 ± 6·1 % (n= 8) of the injected 55Fe was recovered. Taken together the recovery data from the PCT and DCT microinjection studies indicate that the transport of iron occurs in the loop of Henle (LH) and collecting duct system. 4 In vivo luminal microperfusion was used to examine iron transport by the LH in more detail. In tubules perfused with 7 μmol l−155FeCl3, 52·7 ± 8·3 % (n= 8) of the perfused 55Fe was recovered in the collected fluid, indicating significant iron reabsorption in the LH. Addition of copper (Cu2+ as 7 μmol l−1 CuSO4), manganese (Mn2+ as 7 μmol l−1 MnSO4) or zinc (Zn2+ as 7 μmol l−1 ZnSO4) to the perfusate did not affect reabsorption of water, Na+ or K+, but increased recovery of 55Fe to 83·5 ± 6·8 % (n= 8, P < 0·04), 75·8 ± 5·9 (n= 6, not significant, n.s.) and 67·9 ± 3·8; (n= 9, n.s.), respectively. 5 Thus, iron transport in the LH can be reduced by the addition of copper or manganese to the luminal perfusate suggesting that these ions may compete with iron for a common transport pathway. However, this pathway may not be shared by zinc.


Clinical Science | 2011

Acute simvastatin increases endothelial nitric oxide synthase phosphorylation via AMP-activated protein kinase and reduces contractility of isolated rat mesenteric resistance arteries

Luciana V. Rossoni; Mark Wareing; Camilla Ferreira Wenceslau; Mahmood Al-Abri; Chris Cobb; Clare Austin

Statins can have beneficial cholesterol-independent effects on vascular contractility, which may involve increases in the bioavailability of NO (nitric oxide) as a result of phosphorylation of eNOS (endothelial NO synthase). Although this has been attributed to phosphorylation of Akt (also known as protein kinase B), studies in cultured cells have shown that statins can phosphorylate AMPK (AMP-activated protein kinase); it is unknown whether this has functional effects in intact arteries. Thus we investigated the acute effects of simvastatin on resistance arterial contractile function, evaluating the involvement of NO, Akt and AMPK. Isolated rat mesenteric resistance arteries were mounted on a wire myograph. The effects of incubation (1 and 2 h) with simvastatin (0.1 or 1 μM) on contractile responses were examined in the presence and absence of L-NNA (N-nitro-L-arginine; 10 μM) or mevalonate (1 mM). Effects on eNOS, phospho-eNOS (Ser1177), and total and phospho-Akt and -AMPK protein expression were investigated using Western blotting. The effect of AMPK inhibition (compound C, 10 μM) on eNOS phosphorylation and contractile responses were also studied. Simvastatin (1 μM, 2 h) significantly reduced constriction to U46619 and phenylephrine and enhanced dilations to ACh (acetylcholine) in depolarized, but not in U46619-pre-constricted arteries. These effects were completely and partially prevented by L-NNA and mevalonate respectively. Simvastatin increased eNOS and AMPKα phosphorylation, but had no effect on Akt protein expression and phosphorylation after 2 h incubation. Compound C prevented the effects of simvastatin on eNOS phosphorylation and contractility. Thus simvastain can acutely modulate resistance arterial contractile function via mechanisms that involve the AMPK/phospho-eNOS (Ser1177)/NO-dependent pathway.


The Journal of Pathology | 2005

The effect of vascular origin, oxygen, and tumour necrosis factor alpha on trophoblast invasion of maternal arteries in vitro

Ian P. Crocker; Mark Wareing; Glenn R Ferris; Carolyn J.P. Jones; Judith E. Cartwright; Philip N. Baker; John D. Aplin

Extravillous trophoblasts (EVTs) invade and remodel uterine spiral arteries. Regulatory factors may include inherent vessel susceptibility, local oxygen levels and tumour necrosis factor alpha (TNFα). We have used an in vitro model to investigate interstitial and endovascular invasion of myometrial spiral arteries from pregnant and non‐pregnant uteri and also omental arteries. To model endovascular invasion, fluorescent‐labelled EVTs were perfused into the lumen of these dissected vessels. For interstitial invasion, labelled EVTs were layered on top. Cultures were either maintained in 17% or 3% oxygen, or cultured with TNFα. The invasion of arteries from pregnant women occurred via both routes at 17% oxygen, with endovascular invasion more efficient than interstitial. In omental arteries and spiral arteries from non‐pregnant women, endovascular invasion was limited. Endovascular and interstitial invasion were lower in all arteries at 3% oxygen. Typically, endovascular events were clustered, with an associated disruption in the adjacent endothelium and smooth muscle. A role for TNFα in limiting invasion was also supported. In conclusion, priming of uterine arteries may be necessary prior to EVT invasion. Oxygen is a sensitive regulator within this physiological model and increased invasion at higher pO2 may explain the homing of EVT to maternal arteries rather than veins. Adequate vascular transformation may therefore rely on a balance between vascular receptivity, oxygen partial pressure, and exposure to inflammatory mediators. Copyright


PLOS ONE | 2013

Sildenafil citrate increases fetal weight in a mouse model of fetal growth restriction with a normal vascular phenotype.

Mark Dilworth; Irene J. Andersson; Lewis Renshall; Elizabeth Cowley; Philip N. Baker; Susan L. Greenwood; Colin P. Sibley; Mark Wareing

Fetal growth restriction (FGR) is defined as the inability of a fetus to achieve its genetic growth potential and is associated with a significantly increased risk of morbidity and mortality. Clinically, FGR is diagnosed as a fetus falling below the 5th centile of customised growth charts. Sildenafil citrate (SC, Viagra™), a potent and selective phosphodiesterase-5 inhibitor, corrects ex vivo placental vascular dysfunction in FGR, demonstrating potential as a therapy for this condition. However, many FGR cases present without an abnormal vascular phenotype, as assessed by Doppler measures of uterine/umbilical artery blood flow velocity. Thus, we hypothesized that SC would not increase fetal growth in a mouse model of FGR, the placental-specific Igf2 knockout mouse, which has altered placental exchange capacity but normal placental blood flow. Fetal weights were increased (by 8%) in P0 mice following maternal SC treatment (0.4 mg/ml) via drinking water. There was also a trend towards increased placental weight in treated P0 mice (P = 0.056). Additionally, 75% of the P0 fetal weights were below the 5th centile, the criterion used to define human FGR, of the non-treated WT fetal weights; this was reduced to 51% when dams were treated with SC. Umbilical artery and vein blood flow velocity measures confirmed the lack of an abnormal vascular phenotype in the P0 mouse; and were unaffected by SC treatment. 14C-methylaminoisobutyric acid transfer (measured to assess effects on placental nutrient transporter activity) per g placenta was unaffected by SC, versus untreated, though total transfer was increased, commensurate with the trend towards larger placentas in this group. These data suggest that SC may improve fetal growth even in the absence of an abnormal placental blood flow, potentially affording use in multiple sub-populations of individuals presenting with FGR.


Laboratory Investigation | 2008

Oxygen and the liberation of placental factors responsible for vascular compromise

Nicola J Robinson; Mark Wareing; Nicola K. Hudson; Richard T. Blankley; Philip N. Baker; John D. Aplin; Ian P. Crocker

Maternal endothelial activation in pre-eclampsia is attributed to the release of unknown factors from a hypoperfused placenta. To further characterize these factors, we have used a serum-free placental villous explant culture model and investigated the effect of the liberated soluble factors produced on human endothelial cell cultures. Term placental villous explants from uncomplicated pregnancies were cultured for 4 days in 20, 6 or 1% O2 to mimic placental hyperoxia, normoxia and hypoxia. Medium collected from viable explants was applied to cultured human uterine microvascular endothelial cells. Medium conditioned by hypoxic explants caused a significant decrease in endothelial cell ATP levels and mitochondrial dehydrogenase activity, suggestive of a reduced metabolic rate. An additional reduction in mitochondrial membrane potential and increased endothelial cell death occurred as the oxygen concentration to which explants had been exposed decreased. Effects of the hypoxic explant medium were also seen ex vivo in a wire myography model of myometrial artery function, with increased vasoconstriction and attenuated vasodilation following exposure to hypoxic explant medium. These results suggest that hypoxia (1% O2) may stimulate the release of soluble factors from the placenta, which have an adverse effect on endothelial cell metabolism and mitochondrial integrity in vitro. These potentially pathogenic factors are now being characterized.


International Journal of Obesity | 2015

Maternal obesity is associated with a reduction in placental taurine transporter activity

A M Ditchfield; Michelle Desforges; Tracey A. Mills; Jocelyn D. Glazier; Mark Wareing; K. J. Mynett; C.P. Sibley; Susan L. Greenwood

Background/Objectives:Maternal obesity increases the risk of poor pregnancy outcome including stillbirth, pre-eclampsia, fetal growth restriction and fetal overgrowth. These pregnancy complications are associated with dysfunctional syncytiotrophoblast, the transporting epithelium of the human placenta. Taurine, a β-amino acid with antioxidant and cytoprotective properties, has a role in syncytiotrophoblast development and function and is required for fetal growth and organ development. Taurine is conditionally essential in pregnancy and fetal tissues depend on uptake of taurine from maternal blood. We tested the hypothesis that taurine uptake into placental syncytiotrophoblast by the taurine transporter protein (TauT) is lower in obese women (body mass index (BMI)⩾30 kg m−2) than in women of ideal weight (BMI 18.5–24.9 kg m−2) and explored potential regulatory factors.Subjects/Methods:Placentas were collected from term (37–42-week gestation), uncomplicated, singleton pregnancies from women with BMI 19–49 kg m−2. TauT activity was measured as the Na+-dependent uptake of 3H-taurine into placental villous fragments. TauT expression in membrane-enriched placental samples was investigated by western blot. In vitro studies using placental villous explants examined whether leptin or IL-6, adipokines/cytokines that are elevated in maternal obesity, regulates TauT activity.Results:Placental TauT activity was significantly lower in obese women (BMI⩾30) than women of ideal weight (P<0.03) and inversely related to maternal BMI (19–49 kg m−2; P<0.05; n=61). There was no difference in TauT expression between placentas of ideal weight and obese class III (BMI⩾40) subjects. Long-term exposure (48 h) of placental villous explants to leptin or IL-6 did not affect TauT activity.Conclusions:Placental TauT activity at term is negatively related to maternal BMI. We propose that the reduction in placental TauT activity in maternal obesity could lower syncytiotrophoblast taurine concentration, compromise placental development and function, and reduce the driving force for taurine efflux to the fetus, thereby increasing the risk of poor pregnancy outcome.


European Journal of Clinical Investigation | 2005

Chorionic plate artery function and Doppler indices in normal pregnancy and intrauterine growth restriction

Tracey A. Mills; Mark Wareing; G. J. Bugg; Susan L. Greenwood; Philip N. Baker

Background  In fetal growth restriction (FGR) abnormal umbilical artery (UA) Doppler waveform indices suggest increased vascular resistance and impaired placental blood flow. This study aimed to determine whether UA Doppler waveform indices were related to the vasoreactivity of placental chorionic plate small arteries in normal and FGR pregnancies.


Frontiers in Physiology | 2016

Placental Adaptation: What Can We Learn from Birthweight:Placental Weight Ratio?

Christina Hayward; Samantha C. Lean; Colin P. Sibley; Rebecca L. Jones; Mark Wareing; Susan L. Greenwood; Mark Dilworth

Appropriate fetal growth relies upon adequate placental nutrient transfer. Birthweight:placental weight ratio (BW:PW ratio) is often used as a proxy for placental efficiency, defined as the grams of fetus produced per gram placenta. An elevated BW:PW ratio in an appropriately grown fetus (small placenta) is assumed to be due to up-regulated placental nutrient transfer capacity i.e., a higher nutrient net flux per gram placenta. In fetal growth restriction (FGR), where a fetus fails to achieve its genetically pre-determined growth potential, placental weight and BW:PW ratio are often reduced which may indicate a placenta that fails to adapt its nutrient transfer capacity to compensate for its small size. This review considers the literature on BW:PW ratio in both large cohort studies of normal pregnancies and those studies offering insight into the relationship between BW:PW ratio and outcome measures including stillbirth, FGR, and subsequent postnatal consequences. The core of this review is the question of whether BW:PW ratio is truly indicative of altered placental efficiency, and whether changes in BW:PW ratio reflect those placentas which adapt their nutrient transfer according to their size. We consider this question using data from mice and humans, focusing upon studies that have measured the activity of the well characterized placental system A amino acid transporter, both in uncomplicated pregnancies and in FGR. Evidence suggests that BW:PW ratio is reduced both in FGR and in pregnancies resulting in a small for gestational age (SGA, birthweight < 10th centile) infant but this effect is more pronounced earlier in gestation (<28 weeks). In mice, there is a clear association between increased BW:PW ratio and increased placental system A activity. Additionally, there is good evidence in wild-type mice that small placentas upregulate placental nutrient transfer to prevent fetal undergrowth. In humans, this association between BW:PW ratio and placental system A activity is less clear and is worthy of further consideration, both in terms of system A and other placental nutrient transfer processes. This knowledge would help decide the value of measuring BW:PW ratio in terms of determining the risk of poor health outcomes, both in the neonatal period and long term.

Collaboration


Dive into the Mark Wareing's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Dilworth

Central Manchester University Hospitals NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jenny Myers

Manchester Academic Health Science Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lewis Renshall

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge