Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Absenger is active.

Publication


Featured researches published by Markus Absenger.


PLOS ONE | 2012

Aldehyde Dehydrogenase 1, a Potential Marker for Cancer Stem Cells in Human Sarcoma

Birgit Lohberger; Beate Rinner; Nicole Stuendl; Markus Absenger; Bernadette Liegl-Atzwanger; Sonja M. Walzer; Reinhard Windhager; Andreas Leithner

Tumors contain a small population of cancer stem cells (CSC) proposed to be responsible for tumor maintenance and relapse. Aldehyde dehydrogenase 1 (ALDH1) activity has been used as a functional stem cell marker to isolate CSCs in different cancer types. This study used the Aldefluor® assay and fluorescence-activated cell sorting (FACS) analysis to isolate ALDH1high cells from five human sarcoma cell lines and one primary chordoma cell line. ALDH1high cells range from 0.3% (MUG-Chor1) to 4.1% (SW-1353) of gated cells. Immunohistochemical staining, analysis of the clone formation efficiency, and xCELLigence microelectronic sensor technology revealed that ALDH1high cells from all sarcoma cell lines have an increased proliferation rate compared to ALDH1low cells. By investigating of important regulators of stem cell biology, real-time RT-PCR data showed an increased expression of c-Myc, β-catenin, and SOX-2 in the ALDH1high population and a significant higher level of ABCG2. Statistical analysis of data demonstrated that ALDH1high cells of SW-982 and SW-1353 showed higher resistance to commonly used chemotherapeutic agents like doxorubicin, epirubicin, and cisplatin than ALDH1low cells. This study demonstrates that in different sarcoma cell lines, high ALDH1 activity can be used to identify a subpopulation of cells characterized by a significantly higher proliferation rate, increased colony forming, increased expression of ABC transporter genes and stemness markers compared to control cells. In addition, enhanced drug resistance was demonstrated.


Molecular Pharmaceutics | 2014

Development of an Advanced Intestinal in Vitro Triple Culture Permeability Model To Study Transport of Nanoparticles

Christa Schimpel; Birgit J. Teubl; Markus Absenger; Claudia Meindl; Eleonore Fröhlich; Gerd Leitinger; Andreas Zimmer; Eva Roblegg

Intestinal epithelial cell culture models, such as Caco-2 cells, are commonly used to assess absorption of drug molecules and transcytosis of nanoparticles across the intestinal mucosa. However, it is known that mucus strongly impacts nanoparticle mobility and that specialized M cells are involved in particulate uptake. Thus, to get a clear understanding of how nanoparticles interact with the intestinal mucosa, in vitro models are necessary that integrate the main cell types. This work aimed at developing an alternative in vitro permeability model based on a triple culture: Caco-2 cells, mucus-secreting goblet cells and M cells. Therefore, Caco-2 cells and mucus-secreting goblet cells were cocultured on Transwells and Raji B cells were added to stimulate differentiation of M cells. The in vitro triple culture model was characterized regarding confluence, integrity, differentiation/expression of M cells and cell surface architecture. Permeability of model drugs and of 50 and 200 nm polystyrene nanoparticles was studied. Data from the in vitro model were compared with ex vivo permeability results (Ussing chambers and porcine intestine) and correlated well. Nanoparticle uptake was size-dependent and strongly impacted by the mucus layer. Moreover, nanoparticle permeability studies clearly demonstrated that particles were capable of penetrating the intestinal barrier mainly via specialized M cells. It can be concluded that goblet cells and M cells strongly impact nanoparticle uptake in the intestine and should thus be integrated in an in vitro permeability model. The presented model will be an efficient tool to study intestinal transcellular uptake of particulate systems.


Particle and Fibre Toxicology | 2012

Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity.

Eleonore Fröhlich; Claudia Meindl; Eva Roblegg; Birgit Ebner; Markus Absenger; Thomas R. Pieber

BackgroundData from environmental exposure to nanoparticles (NPs) suggest that chronic exposure may increase the incidence of lung, cardiovascular and neurodegenerative diseases. Impairment of cell function by intracellular accumulation of NPs is also suspected. Many types of NPs have been detected in the endosomal-lysosomal system and, upon repeated exposure, alterations of the endosomal-lysosomal system may occur. To identify such effects we compared the effect of carboxyl polystyrene particles (CPS) of different sizes (20-500 nm) on lysosomes of the endothelial cell line EAhy926 after short (24h) and long (72h-96h) exposure times. Lysosomal localization of CPS, as well as lysosomal pH, lysosomal membrane integrity, morphology of the endosomal-lysosomal system and activities of the lysosomal enzymes,cathepsin B and sulfatases, upon exposure to CPS were recorded.ResultsCPS in sizes ≤100 nm showed high co-localization with lysosomes already after 4h, larger CPS after 24h. None of the particles at non-cytotoxic concentrations caused marked changes in lysosomal pH or destroyed lysosomal membrane integrity. At 24h of exposure, 20 nm CPS induced significant dilatation of the endosomal-lysosomal system and reduced activity of lysosomal sulfatases. After 72h, these alterations were less pronounced.ConclusionsDespite accumulation in lysosomes CPS induced only small changes in lysosomes. Upon longer contact, these changes are even less pronounced. The presented panel of assays may serve to identify effects on lysosomes also for other NPs.


Journal of Neurotrauma | 2013

More than cell dust: microparticles isolated from cerebrospinal fluid of brain injured patients are messengers carrying mRNAs, miRNAs, and proteins.

Silke Patz; Christa Trattnig; Gerda Grünbacher; Birgit Ebner; Christian Gülly; Alexandra Novak; Beate Rinner; Gerd Leitinger; Markus Absenger; Oana A. Tomescu; Gerhard G. Thallinger; Ulrike Fasching; Sonja Wissa; Juan Archelos-Garcia; Ute Schäfer

Microparticles are cell-derived, membrane-sheathed structures that are believed to shuttle proteins, mRNA, and miRNA to specific local or remote target cells. To date best described in blood, we now show that cerebrospinal fluid (CSF) contains similar structures that can deliver RNAs and proteins to target cells. These are, in particular, molecules associated with neuronal RNA granules and miRNAs known to regulate neuronal processes. Small RNA molecules constituted 50% of the shuttled ribonucleic acid. Using microarray analysis, we identified 81 mature miRNA molecules in CSF microparticles. Microparticles from brain injured patients were more abundant than in non-injured subjects and contained distinct genetic information suggesting that they play a role in the adaptive response to injury. Notably, miR-9 and miR-451 were differentially packed into CSF microparticles derived from patients versus non-injured subjects. We confirmed the transfer of genetic material from CSF microparticles to adult neuronal stem cells in vitro and a subsequent microRNA-specific repression of distinct genes. This first indication of a regulated transport of functional genetic material in human CSF may facilitate the diagnosis and analysis of cerebral modulation in an otherwise inaccessible organ.


The Journal of Clinical Endocrinology and Metabolism | 2013

Hyperinsulinemia Stimulates Angiogenesis of Human Fetoplacental Endothelial Cells: A Possible Role of Insulin in Placental Hypervascularization in Diabetes Mellitus

Luciana Lassance; Heidi Miedl; Markus Absenger; Francisca Diaz-Perez; U Lang; Gernot Desoye; Ursula Hiden

CONTEXT The insulin/IGF system regulates fetal and placental growth and development. In a pregnancy complicated by maternal diabetes, placentas are hypervascularized and fetal insulin levels are elevated. In the fetal circulation, insulin can act on the placenta through insulin receptors present on the fetoplacental endothelial cells. OBJECTIVE We hypothesized that insulin exerts proangiogenic effects on the fetoplacental endothelial cells, thereby contributing to the placental hypervascularization in diabetes. DESIGN The effect of insulin on angiogenesis and proliferation of human fetoplacental endothelial cells was investigated by a 2-dimensional network formation assay, staining for actin fibers, automatic cell counting, and cell cycle analysis. The signaling pathways involved were identified using antibodies against activated signaling proteins and pharmacological inhibitors. RESULTS Insulin enhanced network formation by 23% (P < .05%) and caused actin reorganization. Insulin stimulated (P < .05) phosphorylation of insulin receptor (+320%), and insulin receptor substrate-1 (+140%), Akt (+177%), glycogen-synthase kinase-β3 (+70%), and endothelial nitric oxide synthase (eNOS; +100%) increased nitric oxide production and activated Ras-related C3 botulinum toxin substrate 1 (Rac1). Insulin did not induce ERK1/2 phosphorylation or proliferation. Inhibition of phosphatidylinositol 3-kinase, eNOS, and Rac1 signaling abolished the effects on network formation. CONCLUSIONS Elevated fetal insulin levels may contribute to the placental hypervascularization in diabetes via the phosphatidylinositol 3-kinase/Akt/eNOS pathway and involve Rac1. However, insulin does not stimulate proliferation and may need to cooperate with other growth factors.


PLOS ONE | 2013

Assessment of Long-Term Effects of Nanoparticles in a Microcarrier Cell Culture System

Maria Mrakovcic; Markus Absenger; Regina Riedl; Claudia Smole; Eva Roblegg; Leopold F. Fröhlich; Eleonore Fröhlich

Nano-sized materials could find multiple applications in medical diagnosis and therapy. One main concern is that engineered nanoparticles, similar to combustion-derived nanoparticles, may cause adverse effects on human health by accumulation of entire particles or their degradation products. Chronic cytotoxicity must therefore be evaluated. In order to perform chronic cytotoxicity testing of plain polystyrene nanoparticles on the endothelial cell line EAhy 926, we established a microcarrier cell culture system for anchorage-dependent cells (BioLevitatorTM). Cells were cultured for four weeks and exposed to doses, which were not cytotoxic upon 24 hours of exposure. For comparison, these particles were also studied in regularly sub-cultured cells, a method that has traditionally been used to assess chronic cellular effects. Culturing on basal membrane coated microcarriers produced very high cell densities. Fluorescent particles were mainly localized in the lysosomes of the exposed cells. After four weeks of exposure, the number of cells exposed to 20 nm polystyrene particles decreased by 60% as compared to untreated controls. When tested in sub-cultured cells, the same particles decreased cell numbers to 80% of the untreated controls. Dose-dependent decreases in cell numbers were also noted after exposure of microcarrier cultured cells to 50 nm short multi-walled carbon nanotubes. Our findings support that necrosis, but not apoptosis, contributed to cell death of the exposed cells in the microcarrier culture system. In conclusion, the established microcarrier model appears to be more sensitive for the identification of cellular effects upon prolonged and repeated exposure to nanoparticles than traditional sub-culturing.


PLOS ONE | 2014

Repetitive Long-Term Hyperbaric Oxygen Treatment (HBOT) Administered after Experimental Traumatic Brain Injury in Rats Induces Significant Remyelination and a Recovery of Sensorimotor Function

Klaus Kraitsy; Muammer Ueçal; Stefan Grossauer; Lukas Bruckmann; Florentina Pfleger; Stefan Ropele; Franz Fazekas; Gerda Gruenbacher; Silke Patz; Markus Absenger; Christian Porubsky; Freyja Maria Smolle-Juettner; Irem Tezer; Marek Molcanyi; Ulrike Fasching; Ute Schaefer

Cells in the central nervous system rely almost exclusively on aerobic metabolism. Oxygen deprivation, such as injury-associated ischemia, results in detrimental apoptotic and necrotic cell loss. There is evidence that repetitive hyperbaric oxygen therapy (HBOT) improves outcomes in traumatic brain-injured patients. However, there are no experimental studies investigating the mechanism of repetitive long-term HBOT treatment-associated protective effects. We have therefore analysed the effect of long-term repetitive HBOT treatment on brain trauma-associated cerebral modulations using the lateral fluid percussion model for rats. Trauma-associated neurological impairment regressed significantly in the group of HBO-treated animals within three weeks post trauma. Evaluation of somatosensory-evoked potentials indicated a possible remyelination of neurons in the injured hemisphere following HBOT. This presumption was confirmed by a pronounced increase in myelin basic protein isoforms, PLP expression as well as an increase in myelin following three weeks of repetitive HBO treatment. Our results indicate that protective long-term HBOT effects following brain injury is mediated by a pronounced remyelination in the ipsilateral injured cortex as substantiated by the associated recovery of sensorimotor function.


Experimental Dermatology | 2014

Photohardening of polymorphic light eruption patients decreases baseline epidermal Langerhans cell density while increasing mast cell numbers in the papillary dermis

Peter Wolf; Alexandra Gruber-Wackernagel; Isabella Bambach; Ulrike Schmidbauer; Gerlinde Mayer; Markus Absenger; Eleonore Fröhlich; Scott N. Byrne

The pathogenesis of polymorphic light eruption (PLE) has been linked to a lack of UV‐induced immune suppression. To determine the role of Langerhans cells (LC), mast cells and regulatory T cells, biopsies from PLE patients were taken from exposed sites in spring before and after photohardening with 311 nm or PUVA as well as again in summer. Skin sections were assessed for the presence of Langerin/CD1a+ LC and CD3+, CD4+, CD25+ or FoxP3+ T cells and mast cells. Photohardening transiently decreased the density of epidermal LC and significantly increased a low baseline mast cell density in the papillary dermis of PLE patients. Baseline T cell numbers in the skin were low, and there was no difference in PLE patients among any time point. This suggests that LC suppression together with recruitment of mast cells into photohardened skin may be a key cellular event underlying the mechanism by which phototherapy protects from PLE.


BioMed Research International | 2013

Suitability of Cell-Based Label-Free Detection for Cytotoxicity Screening of Carbon Nanotubes

Claudia Meindl; Markus Absenger; Eva Roblegg; Eleonore Fröhlich

Cytotoxicity testing of nanoparticles (NPs) by conventional screening assays is often complicated by interference. Carbon nanotubes (CNTs) are particularly difficult to assess. To test the suitability of cell-based label-free techniques for this application, a panel of CNTs with different diameters and surface functionalizations was assessed by impedance-based technique (xCELLigence RTCA) and automated microscopy (Cell-IQ) compared to formazan bioreduction (MTS assay). For validation of the label-free systems different concentrations of ethanol and of amine (AMI) polystyrene NPs were used. CNTs were evaluated in various cell lines, but only endothelial EAhy926 cells and L929 and V79 fibroblasts could be evaluated in all systems. Polystyrene particles obtained similar results in all assays. All systems identified thin (<8 nm) CNTs as more cytotoxic than thick (>20 nm) CNTs, but detection by xCELLigence system was less sensitive to CNT-induced cytotoxicity. Despite advantages, such as continuous monitoring and more detailed analysis of cytotoxic effects, label-free techniques cannot be generally recommended for cytotoxicity screening of NPs.


Journal of Materials Science: Materials in Medicine | 2014

Effects of the polymeric niche on neural stem cell characteristics during primary culturing.

Stefan Haubenwallner; Matthias Katschnig; Ulrike Fasching; Silke Patz; Christa Trattnig; Natascha Andraschek; Gerda Grünbacher; Markus Absenger; Stephan Laske; Clemens Holzer; Werner Balika; Manuela Wagner; Ute Schäfer

The polymeric niche encountered by cells during primary culturing can affect cell fate. However, most cell types are primarily propagated on polystyrene (PS). A cell type specific screening for optimal primary culture polymers particularly for regenerative approaches seems inevitable. The effect of physical and chemical properties of treated (corona, oxygen/nitrogen plasma) and untreated cyclic olefin polymer (COP), polymethymethacrylate (PMMA), PP, PLA, PS, PC on neuronal stem cell characteristics was analyzed. Our comprehensive approach revealed plasma treated COP and PMMA as optimal polymers for primary neuronal stem cell culturing and propagation. An increase in the number of NT2/D1 cells with pronounced adhesion, metabolic activities and augmented expression of neural precursor markers was associated to the plasma treatment of surfaces of COP and PMMA with nitrogen or oxygen, respectively. A shift towards large cell sizes at stable surface area/volume ratios that might promote the observed increase in metabolic activities and distinct modulations in F-actin arrangements seem to be primarily mediated by the plasma treatment of surfaces. These results indicate that the polymeric niche has a distinct impact on various cell characteristics. The selection of distinct polymers and the controlled design of an optimized polymer microenvironment might thereby be an effective tool to promote essential cell characteristics for subsequent approaches.

Collaboration


Dive into the Markus Absenger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Meindl

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Gerd Leitinger

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Silke Patz

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Ulrike Fasching

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Beate Rinner

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Birgit Ebner

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge