Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Wendling is active.

Publication


Featured researches published by Markus Wendling.


Radiotherapy and Oncology | 2008

A literature review of electronic portal imaging for radiotherapy dosimetry

Wouter van Elmpt; Leah N. McDermott; S. Nijsten; Markus Wendling; Philippe Lambin; Ben J. Mijnheer

Electronic portal imaging devices (EPIDs) have been the preferred tools for verification of patient positioning for radiotherapy in recent decades. Since EPID images contain dose information, many groups have investigated their use for radiotherapy dose measurement. With the introduction of the amorphous-silicon EPIDs, the interest in EPID dosimetry has been accelerated because of the favourable characteristics such as fast image acquisition, high resolution, digital format, and potential for in vivo measurements and 3D dose verification. As a result, the number of publications dealing with EPID dosimetry has increased considerably over the past approximately 15 years. The purpose of this paper was to review the information provided in these publications. Information available in the literature included dosimetric characteristics and calibration procedures of various types of EPIDs, strategies to use EPIDs for dose verification, clinical approaches to EPID dosimetry, ranging from point dose to full 3D dose distribution verification, and current clinical experience. Quality control of a linear accelerator, pre-treatment dose verification and in vivo dosimetry using EPIDs are now routinely used in a growing number of clinics. The use of EPIDs for dosimetry purposes has matured and is now a reliable and accurate dose verification method that can be used in a large number of situations. Methods to integrate 3D in vivo dosimetry and image-guided radiotherapy (IGRT) procedures, such as the use of kV or MV cone-beam CT, are under development. It has been shown that EPID dosimetry can play an integral role in the total chain of verification procedures that are implemented in a radiotherapy department. It provides a safety net for simple to advanced treatments, as well as a full account of the dose delivered. Despite these favourable characteristics and the vast range of publications on the subject, there is still a lack of commercially available solutions for EPID dosimetry. As strategies evolve and commercial products become available, EPID dosimetry has the potential to become an accurate and efficient means of large-scale patient-specific IMRT dose verification for any radiotherapy department.


Medical Physics | 2006

Accurate two-dimensional IMRT verification using a back-projection EPID dosimetry method

Markus Wendling; Robert J. W. Louwe; Leah N. McDermott; Jan-Jakob Sonke; Marcel van Herk; Ben J. Mijnheer

The use of electronic portal imaging devices (EPIDs) is a promising method for the dosimetric verification of external beam, megavoltage radiation therapy-both pretreatment and in vivo. In this study, a previously developed EPID back-projection algorithm was modified for IMRT techniques and applied to an amorphous silicon EPID. By using this back-projection algorithm, two-dimensional dose distributions inside a phantom or patient are reconstructed from portal images. The model requires the primary dose component at the position of the EPID. A parametrized description of the lateral scatter within the imager was obtained from measurements with an ionization chamber in a miniphantom. In addition to point dose measurements on the central axis of square fields of different size, we also used dose profiles of those fields as reference input data for our model. This yielded a better description of the lateral scatter within the EPID, which resulted in a higher accuracy in the back-projected, two-dimensional dose distributions. The accuracy of our approach was tested for pretreatment verification of a five-field IMRT plan for the treatment of prostate cancer. Each field had between six and eight segments and was evaluated by comparing the back-projected, two-dimensional EPID dose distribution with a film measurement inside a homogeneous slab phantom. For this purpose, the y-evaluation method was used with a dose-difference criterion of 2% of dose maximum and a distance-to-agreement criterion of 2 mm. Excellent agreement was found between EPID and film measurements for each field, both in the central part of the beam and in the penumbra and low-dose regions. It can be concluded that our modified algorithm is able to accurately predict the dose in the midplane of a homogeneous slab phantom. For pretreatment IMRT plan verification, EPID dosimetry is a reliable and potentially fast tool to check the absolute dose in two dimensions inside a phantom for individual IMRT fields. Film measurements inside a phantom can therefore be replaced by EPID measurements.


Medical Physics | 2010

Catching errors with in vivo EPID dosimetry

A. Mans; Markus Wendling; Leah N. McDermott; J.J. Sonke; R. Tielenburg; R.E. Vijlbrief; B.J. Mijnheer; M. van Herk; J. Stroom

The potential for detrimental incidents and the ever increasing complexity of patient treatments emphasize the need for accurate dosimetric verification in radiotherapy. For this reason, all curative treatments are verified, either pretreatment or in vivo, by electronic portal imaging device (EPID) dosimetry in the Radiation Oncology Department of the Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands. Since the clinical introduction of the method in January 2005 until August 2009, treatment plans of 4337 patients have been verified. Among these plans, 17 serious errors were detected that led to intervention. Due to their origin, nine of these errors would not have been detected with pretreatment verification. The method is illustrated in detail by the case of a plan transfer error detected in a 5×5Gy intensity-modulated radiotherapy (IMRT) rectum treatment. The EPID reconstructed dose at the isocenter was 6.3% below the planned value. Investigation of the plan transfer chain revealed that due to a network transfer error, the plan was corrupted. 3D analysis of the acquired EPID data revealed serious underdosage of the planning target volume: On average 11.6%, locally up to 20%. This report shows the importance of in vivo (EPID) dosimetry for all treatment plans as well as the ability of the method to assess the dosimetric impact of deviations found.


Radiotherapy and Oncology | 2010

3D Dosimetric verification of volumetric-modulated arc therapy by portal dosimetry

A. Mans; P. Remeijer; I. Olaciregui-Ruiz; Markus Wendling; Jan-Jakob Sonke; Ben J. Mijnheer; Marcel van Herk; J. Stroom

BACKGROUND AND PURPOSEnTo demonstrate the feasibility of back-projection portal dosimetry for accurate 3D dosimetric verification of volumetric-modulated arc therapy (VMAT), pre-treatment as well as in vivo.nnnMATERIALS AND METHODSnSeveral modifications to our existing approach were implemented to make the method applicable to VMAT: (i) gantry angle-resolved data acquisition, (ii) calculation of the patient transmission, (iii) compensation for detector flex and (iv) 3D dose reconstruction and evaluation.nnnRESULTSnPlanned and EPID-(Electronic Portal Image Detector)-reconstructed dose distributions show good agreement for pre-treatment verification of two prostate, a stereotactic lung and a head-and-neck VMAT plan and for in vivo verification of VMAT treatments of prostate and lung cancer. Averaged over pre-treatment verifications, planned and measured isocentre dose ratios were -1.2% (range [-4.7%,1.8%]). 3D gamma analysis (3% maximum dose, 3mm) revealed mean gamma gamma(mean)=0.37 [0.34,0.39], maximum 1% gamma gamma(1%)=0.72 [0.66,0.81] and percentage of points with gamma1 P(gamma)(1)=99% [97%,100%]. For in vivo verification, the average isocentre dose ratio was -1.2% [-0.8%,-1.7%], gamma(mean)=0.52 [0.40,0.64], gamma(1%)=0.92 [0.76,1.08] and P(gamma)(1)=96% [93%,100%].nnnCONCLUSIONSnOur portal dosimetry method was successfully adapted for verification of VMAT treatments, pre-treatment as well as in vivo.


Medical Physics | 2007

A fast algorithm for gamma evaluation in 3D

Markus Wendling; Lambert Zijp; Leah N. McDermott; Ewoud J. Smit; Jan-Jakob Sonke; Ben J. Mijnheer; Marcel van Herk

The gamma-evaluation method is a tool by which dose distributions can be compared in a quantitative manner combining dose-difference and distance-to-agreement criteria. Since its introduction, the gamma evaluation has been used in many studies and is on the verge of becoming the preferred dose distribution comparison method, particularly for intensity-modulated radiation therapy (IMRT) verification. One major disadvantage, however, is its long computation time, which especially applies to the comparison of three-dimensional (3D) dose distributions. We present a fast algorithm for a full 3D gamma evaluation at high resolution. Both the reference and evaluated dose distributions are first resampled on the same grid. For each point of the reference dose distribution, the algorithm searches for the best point of agreement according to the gamma method in the evaluated dose distribution, which can be done at a subvoxel resolution. Speed, computer memory efficiency, and high spatial resolution are achieved by searching around each reference point with increasing distance in a sphere, which has a radius of a chosen maximum search distance and is interpolated on-the-fly at a chosen sample step size. The smaller the sample step size and the larger the differences between the dose distributions, the longer the gamma evaluation takes. With decreasing sample step size, statistical measures of the 3D gamma distribution converge. Two clinical examples were investigated using 3% of the prescribed dose as dose-difference and 0.3 cm as distance-to-agreement criteria. For 0.2 cm grid spacing, the change in gamma indices was negligible below a sample step size of 0.02 cm. Comparing the full 3D gamma evaluation and slice-by-slice 2D gamma evaluations (2.5D) for these clinical examples, the gamma indices improved by searching in full 3D space, with the average gamma index decreasing by at least 8%.


Medical Physics | 2009

A simple backprojection algorithm for 3D in vivo EPID dosimetry of IMRT treatments

Markus Wendling; Leah N. McDermott; A. Mans; Jan-Jakob Sonke; Marcel van Herk; Ben J. Mijnheer

Treatment plans are usually designed, optimized, and evaluated based on the total 3D dose distribution, motivating a total 3D dose verification. The purpose of this study was to develop a 2D transmission-dosimetry method using an electronic portal imaging device (EPID) into a simple 3D method that provides 3D dose information. In the new method, the dose is reconstructed within the patient volume in multiple planes parallel to the EPID for each gantry angle. By summing the 3D dose grids of all beams, the 3D dose distribution for the total treatment fraction is obtained. The algorithm uses patient contours from the planning CT scan but does not include tissue inhomogeneity corrections. The 3D EPID dosimetry method was tested for IMRT fractions of a prostate, a rectum, and a head-and-neck cancer patient. Planned and in vivo-measured dose distributions were within 2% at the dose prescription point. Within the 50% isodose surface of the prescribed dose, at least 97% of points were in agreement, evaluated with a 3D gamma method with criteria of 3% of the prescribed dose and 0.3 cm. Full 3D dose reconstruction on a 0.1 x 0.1 x 0.1 cm3 grid and 3D gamma evaluation took less than 15 min for one fraction on a standard PC. The method allows in vivo determination of 3D dose-volume parameters that are common in clinical practice. The authors conclude that their EPID dosimetry method is an accurate and fast tool for in vivo dose verification of IMRT plans in 3D. Their approach is independent of the treatment planning system and provides a practical safety net for radiotherapy.


Medical Physics | 2004

The long-term stability of amorphous silicon flat panel imaging devices for dosimetry purposes

R. J. W. Louwe; Leah N. McDermott; J.J. Sonke; R. Tielenburg; Markus Wendling; M. van Herk; B.J. Mijnheer

This study was carried out to determine the stability of the response of amorphous silicon (a-Si)-flat panel imagers for dosimetry applications. Measurements of the imagers response under reference conditions were performed on a regular basis for four detectors of the same manufacturer. We found that the ambient temperature influenced the dark-field, while the gain of the imager signal was unaffected. Therefore, temperature fluctuations were corrected for by applying a dynamic darkfield correction. This correction method also removed the influence of a small, irreversible increase of the dark-field current, which was equal to 0.5% of the dynamic range of the imager per year and was probably caused by mild radiation damage to the a-Si array. By applying a dynamic dark-field correction, excellent stability of the response over the entire panel of all imagers of 0.5% (1 SD) was obtained over an observation period up to 23 months. However, two imagers had to be replaced after several months. For one imager, an image segment stopped functioning, while the image quality of the other imager degraded significantly. We conclude that the tested a-Si EPIDs have a very stable response and are therefore well suited for dosimetry. We recommend, however, applying quality assurance tests dedicated to both imaging and dosimetry.


Medical Physics | 2006

Clinical experience with EPID dosimetry for prostate IMRT pre-treatment dose verification

Leah N. McDermott; Markus Wendling; B. van Asselen; J. Stroom; J.J. Sonke; M. van Herk; B.J. Mijnheer

The aim of this study was to demonstrate how dosimetry with an amorphous silicon electronic portal imaging device (a-Si EPID) replaced film and ionization chamber measurements for routine pre-treatment dosimetry in our clinic. Furthermore, we described how EPID dosimetry was used to solve a clinical problem. IMRT prostate plans were delivered to a homogeneous slab phantom. EPID transit images were acquired for each segment. A previously developed in-house back-projection algorithm was used to reconstruct the dose distribution in the phantom mid-plane (intersecting the isocenter). Segment dose images were summed to obtain an EPID mid-plane dose image for each field. Fields were compared using profiles and in two dimensions with the y evaluation (criteria: 3%/3 mm). To quantify results, the average gamma (gamma avg), maximum gamma (gamma max), and the percentage of points with gamma < 1(P gamma < 1) were calculated within the 20% isodose line of each field. For 10 patient plans, all fields were measured with EPID and film at gantry set to 0 degrees. The film was located in the phantom coronal mid-plane (10 cm depth), and compared with the back-projected EPID mid-plane absolute dose. EPID and film measurements agreed well for all 50 fields, with (gamma avg) =0.16, (gamma max)=1.00, and (P gamma < 1)= 100%. Based on these results, film measurements were discontinued for verification of prostate IMRT plans. For 20 patient plans, the dose distribution was re-calculated with the phantom CT scan and delivered to the phantom with the original gantry angles. The planned isocenter dose (plan(iso)) was verified with the EPID (EPID(iso)) and an ionization chamber (IC(iso)). The average ratio, (EPID(iso)/IC(iso)), was 1.00 (0.01 SD). Both measurements were systematically lower than planned, with (EPID(iso)/plan(iso)) and (IC(iso)/plan(iso))=0.99 (0.01 SD). EPID mid-plane dose images for each field were also compared with the corresponding plane derived from the three dimensional (3D) dose grid calculated with the phantom CT scan. Comparisons of 100 fields yielded (gamma avg)=0.39, gamma max=2.52, and (P gamma < 1)=98.7%. Seven plans revealed under-dosage in individual fields ranging from 5% to 16%, occurring at small regions of overlapping segments or along the junction of abutting segments (tongue-and-groove side). Test fields were designed to simulate errors and gave similar results. The agreement was improved after adjusting an incorrectly set tongue-and-groove width parameter in the treatment planning system (TPS), reducing (gamma max) from 2.19 to 0.80 for the test field. Mid-plane dose distributions determined with the EPID were consistent with film measurements in a slab phantom for all IMRT fields. Isocenter doses of the total plan measured with an EPID and an ionization chamber also agreed. The EPID can therefore replace these dosimetry devices for field-by-field and isocenter IMRT pre-treatment verification. Systematic errors were detected using EPID dosimetry, resulting in the adjustment of a TPS parameter and alteration of two clinical patient plans. One set of EPID measurements (i.e., one open and transit image acquired for each segment of the plan) is sufficient to check each IMRT plan field-by-field and at the isocenter, making it a useful, efficient, and accurate dosimetric tool.


Medical Physics | 2011

In aqua vivo EPID dosimetry

Markus Wendling; Leah N. McDermott; A. Mans; I. Olaciregui-Ruiz; Raul Pecharromán-Gallego; Jan-Jakob Sonke; J. Stroom; Marcel van Herk; Ben J. Mijnheer

PURPOSEnAt the Netherlands Cancer Institute--Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment.nnnMETHODSnThe key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D γ evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D γ evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT.nnnRESULTSnThe improvements by applying the in aqua vivo approach are considerable. The percentage of γ values ≤1 increased on average from 66.2% to 93.1% and from 43.6% to 97.5% for the IMRT and VMAT cases, respectively. The corresponding mean γ value decreased from 0.99 to 0.43 for the IMRT cases and from 1.71 to 0.40 for the VMAT cases, which is similar to the accepted clinical values for the verification of IMRT treatments of prostate, rectum, and head-and-neck cancers. The deviation between the reconstructed and planned dose at the isocenter diminished on average from 5.3% to 0.5% for the VMAT patients and was almost the same, within 1%, for the IMRT cases. The in aqua vivo verification results for IMRT and VMAT treatments of a large group of patients had a mean γ of approximately 0.5, a percentage of γ values ≤1 larger than 89%, and a difference of the isocenter dose value less than 1%.nnnCONCLUSIONSnWith the in aqua vivo approach for the verification of lung cancer treatments (IMRT and VMAT), we can achieve results with the same accuracy as obtained during in vivo EPID dosimetry of sites without large inhomogeneities.


Medical Physics | 2007

Three‐dimensional heart dose reconstruction to estimate normal tissue complication probability after breast irradiation using portal dosimetry

R. J. W. Louwe; Markus Wendling; M. van Herk; B.J. Mijnheer

Irradiation of the heart is one of the major concerns during radiotherapy of breast cancer. Three-dimensional (3D) treatment planning would therefore be useful but cannot always be performed for left-sided breast treatments, because CT data may not be available. However, even if 3D dose calculations are available and an estimate of the normal tissue damage can be made, uncertainties in patient positioning may significantly influence the heart dose during treatment. Therefore, 3D reconstruction of the actual heart dose during breast cancer treatment using electronic imaging portal device (EPID) dosimetry has been investigated. A previously described method to reconstruct the dose in the patient from treatment portal images at the radiological midsurface was used in combination with a simple geometrical model of the irradiated heart volume to enable calculation of dose-volume histograms (DVHs), to independently verify this aspect of the treatment without using 3D data from a planning CT scan. To investigate the accuracy of our method, the DVHs obtained with full 3D treatment planning system (TPS) calculations and those obtained after resampling the TPS dose in the radiological midsurface were compared for fifteen breast cancer patients for whom CT data were available. In addition, EPID dosimetry as well as 3D dose calculations using our TPS, film dosimetry, and ionization chamber measurements were performed in an anthropomorphic phantom. It was found that the dose reconstructed using EPID dosimetry and the dose calculated with the TPS agreed within 1.5% in the lung/heart region. The dose-volume histograms obtained with EPID dosimetry were used to estimate the normal tissue complication probability (NTCP) for late excess cardiac mortality. Although the accuracy of these NTCP calculations might be limited due to the uncertainty in the NTCP model, in combination with our portal dosimetry approach it allows incorporation of the actual heart dose. For the anthropomorphic phantom, and for fifteen patients for whom CT data were available to test our method, the average difference between the NTCP values obtained with our method and those resulting from the dose distributions calculated with the TPS was 0.1% +/- 0.3% (1 SD). Most NTCP values were 1%-2% lower than those obtained using the method described by Hurkmans et al. [Radiother. Oncol. 62, 163-171 (2002)], using the maximum heart distance determined from a simulator image as a single pre-treatment parameter. A similar difference between the two methods was found for twelve patients using in vivo EPID dosimetry; the average NTCP value obtained with EPID dosimetry was 0.9%, whereas an average NTCP value of 2.2% was derived using the method of Hurkmans et al. The results obtained in this study show that EPID dosimetry is well suited for in vivo verification of the heart dose during breast cancer treatment, and can be used to estimate the NTCP for late excess cardiac mortality. To the best of our knowledge, this is the first study using portal dosimetry to calculate a DVH and NTCP of an organ at risk.

Collaboration


Dive into the Markus Wendling's collaboration.

Top Co-Authors

Avatar

Leah N. McDermott

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

B.J. Mijnheer

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

M. van Herk

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

J. Stroom

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

A. Mans

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Ben J. Mijnheer

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

J.J. Sonke

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Jan-Jakob Sonke

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Olaciregui-Ruiz

Netherlands Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge