Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marleen Van den Broeck is active.

Publication


Featured researches published by Marleen Van den Broeck.


Nature | 2006

Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21.

Marc Cruts; Ilse Gijselinck; Julie van der Zee; Sebastiaan Engelborghs; Hans Wils; Daniel Pirici; Rosa Rademakers; Rik Vandenberghe; Bart Dermaut; Jean-Jacques Martin; Cornelia van Duijn; Karin Peeters; Raphael Sciot; Patrick Santens; Tim De Pooter; Maria Mattheijssens; Marleen Van den Broeck; Ivy Cuijt; Krist'l Vennekens; Peter Paul De Deyn; Samir Kumar-Singh; Christine Van Broeckhoven

Frontotemporal dementia (FTD) with ubiquitin-immunoreactive neuronal inclusions (both cytoplasmic and nuclear) of unknown nature has been linked to a chromosome 17q21 region (FTDU-17) containing MAPT (microtubule-associated protein tau). FTDU-17 patients have consistently been shown to lack a tau-immunoreactive pathology, a feature characteristic of FTD with parkinsonism linked to mutations in MAPT (FTDP-17). Furthermore, in FTDU-17 patients, mutations in MAPT and genomic rearrangements in the MAPT region have been excluded by both genomic sequencing and fluorescence in situ hybridization on mechanically stretched chromosomes. Here we demonstrate that FTDU-17 is caused by mutations in the gene coding for progranulin (PGRN), a growth factor involved in multiple physiological and pathological processes including tumorigenesis. Besides the production of truncated PGRN proteins due to premature stop codons, we identified a mutation within the splice donor site of intron 0 (IVS0 + 5G > C), indicating loss of the mutant transcript by nuclear degradation. The finding was made within an extensively documented Belgian FTDU-17 founder family. Transcript and protein analyses confirmed the absence of the mutant allele and a reduction in the expression of PGRN. We also identified a mutation (c.3G > A) in the Met1 translation initiation codon, indicating loss of PGRN due to lack of translation of the mutant allele. Our data provide evidence that PGRN haploinsufficiency leads to neurodegeneration because of reduced PGRN-mediated neuronal survival. Furthermore, in a Belgian series of familial FTD patients, PGRN mutations were 3.5 times more frequent than mutations in MAPT, underscoring a principal involvement of PGRN in FTD pathogenesis.


Lancet Neurology | 2012

A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study

Ilse Gijselinck; Tim Van Langenhove; Julie van der Zee; Kristel Sleegers; Stéphanie Philtjens; Gernot Kleinberger; Jonathan Janssens; Karolien Bettens; Caroline Van Cauwenberghe; Sandra Pereson; Sebastiaan Engelborghs; Anne Sieben; Rik Vandenberghe; Patrick Santens; Jan De Bleecker; Githa Maes; Veerle Bäumer; Lubina Dillen; Geert Joris; Ivy Cuijt; Ellen Corsmit; Ellen Elinck; Jasper Van Dongen; Steven Vermeulen; Marleen Van den Broeck; Carolien Vaerenberg; Maria Mattheijssens; Karin Peeters; Wim Robberecht; Patrick Cras

BACKGROUND Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are extremes of a clinically, pathologically, and genetically overlapping disease spectrum. A locus on chromosome 9p21 has been associated with both disorders, and we aimed to identify the causal gene within this region. METHODS We studied 305 patients with FTLD, 137 with ALS, and 23 with concomitant FTLD and ALS (FTLD-ALS) and 856 controls from Flanders (Belgium); patients were identified from a hospital-based cohort and were negative for mutations in known FTLD and ALS genes. We also examined the family of one patient with FTLD-ALS previously linked to 9p21 (family DR14). We analysed 130 kbp at 9p21 in association and segregation studies, genomic sequencing, repeat genotyping, and expression studies to identify the causal mutation. We compared genotype-phenotype correlations between mutation carriers and non-carriers. FINDINGS In the patient-control cohort, the single-nucleotide polymorphism rs28140707 within the 130 kbp region of 9p21 was associated with disease (odds ratio [OR] 2·6, 95% CI 1·5-4·7; p=0·001). A GGGGCC repeat expansion in C9orf72 completely co-segregated with disease in family DR14. The association of rs28140707 with disease in the patient-control cohort was abolished when we excluded GGGGCC repeat expansion carriers. In patients with familial disease, six (86%) of seven with FTLD-ALS, seven (47%) of 15 with ALS, and 12 (16%) of 75 with FTLD had the repeat expansion. In patients without known familial disease, one (6%) of 16 with FTLD-ALS, six (5%) of 122 with ALS, and nine (4%) of 230 with FTLD had the repeat expansion. Mutation carriers primarily presented with classic ALS (10 of 11 individuals) or behavioural variant FTLD (14 of 15 individuals). Mean age at onset of FTLD was 55·3 years (SD 8·4) in 21 mutation carriers and 63·2 years (9·6) in 284 non-carriers (p=0·001); mean age at onset of ALS was 54·5 years (9·9) in 13 carriers and 60·4 years (11·4) in 124 non-carriers. Postmortem neuropathological analysis of the brains of three mutation carriers with FTLD showed a notably low TDP-43 load. In brain at postmortem, C9orf72 expression was reduced by nearly 50% in two carriers compared with nine controls (p=0·034). In familial patients, 14% of FTLD-ALS, 50% of ALS, and 62% of FTLD was not accounted for by known disease genes. INTERPRETATION We identified a pathogenic GGGGCC repeat expansion in C9orf72 on chromosome 9p21, as recently also reported in two other studies. The GGGGCC repeat expansion is highly penetrant, explaining all of the contribution of chromosome 9p21 to FTLD and ALS in the Flanders-Belgian cohort. Decreased expression of C9orf72 in brain suggests haploinsufficiency as an underlying disease mechanism. Unidentified genes probably also contribute to the FTLD-ALS disease spectrum. FUNDING Full funding sources listed at end of paper (see Acknowledgments).


Annals of Neurology | 2004

α-Synuclein promoter confers susceptibility to Parkinson's disease

Philippe Pals; Sarah Lincoln; Jonathan Manning; Michael G. Heckman; Lisa Skipper; Mary M. Hulihan; Marleen Van den Broeck; Tim De Pooter; Patrick Cras; Julia E. Crook; Christine Van Broeckhoven; Matthew J. Farrer

Familial Parkinsons disease (PD) has been linked to missense and genomic multiplication mutations of the α‐synuclein gene (SNCA). Genetic variability within SNCA has been implicated in idiopathic PD in many populations. We now confirm and extend these findings, within a Belgian sample, using a high‐resolution map of genetic markers across the SNCA locus. Our study implicates the SNCA promoter in susceptibility to PD, and more specifically defines a minimum promoter haplotype, spanning approximately 15.3kb of sequence, which is overrepresented in patients. Our findings represent a biomarker for PD and may have implications for patient diagnosis, longitudinal evaluation, and treatment. Ann Neurol 2004;56:591–595


Annals of Neurology | 2004

A novel presenilin 1 mutation associated with Pick's disease but not β‐amyloid plaques

Bart Dermaut; Samir Kumar-Singh; S. Engelborghs; Jessie Theuns; Rosa Rademakers; Jos Saerens; Barbara A. Pickut; Karin Peeters; Marleen Van den Broeck; Krist'l Vennekens; Stephen Claes; Marc Cruts; Patrick Cras; Jean Jacques Martin; Christine Van Broeckhoven; Peter Paul De Deyn

Familial forms of frontotemporal dementia (FTD) with tauopathy are mostly caused by mutations in the gene encoding the microtubule‐associated protein tau (MAPT). However, rare forms of familial tauopathy without MAPT mutations have been reported, suggesting other tauopathy‐related genetic defects. Interestingly, two presenilin 1 (PS1) mutations (Leu113Pro and insArg352) recently have been associated with familial FTD albeit without neuropathological confirmation. We report here a novel PS1 mutation in a patient with Pick‐type tauopathy in the absence of extracellular β‐amyloid deposits. The mutation is predicted to substitute Gly→Val at codon position 183 (Gly183Val) and to affect the splice signal at the junction of the sixth exon and intron. Further clinical‐genetic investigation showed a positive family history of FTD‐like dementia and suggested that Gly183Val is associated with a phenotypically heterogeneous neurodegenerative disorder. Our results suggest PS1 as a candidate gene for Pick‐type tauopathy without MAPT mutations.


Annals of Neurology | 2003

PRNP Val129 homozygosity increases risk for early-onset Alzheimer's disease

Bart Dermaut; Esther A. Croes; Rosa Rademakers; Marleen Van den Broeck; Marc Cruts; Albert Hofman; Cornelia M. van Duijn; Christine Van Broeckhoven

We analyzed the PRNP M129V polymorphism in a Dutch population‐based early‐onset Alzheimers disease sample. We observed a significant association between early‐onset Alzheimers disease and homozygosity of M129V (odds ratio [OR], 1.9; 95% confidence interval [CI], 1.1–3.3; p = 0.02) with the highest risk for V homozygotes (OR, 3.2; 95% CI, 1.4–7.1; p < 0.01). In patients with a positive family history, these risks increased to 2.6 (95% CI, 1.3–5.3; p < 0.01) and 3.5 (95% CI, 1.3–9.3; p = 0.01), respectively. Ann Neurol 2003;53;409–412


Brain | 2011

TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort

Julie van der Zee; Tim Van Langenhove; Gernot Kleinberger; Kristel Sleegers; Sebastiaan Engelborghs; Rik Vandenberghe; Patrick Santens; Marleen Van den Broeck; Geert Joris; Jolien Brys; Maria Mattheijssens; Karin Peeters; Patrick Cras; Peter Paul De Deyn; Marc Cruts; Christine Van Broeckhoven

In a genome-wide association study of frontotemporal lobar degeneration with pathological inclusions of TAR DNA-binding protein, significant association was obtained with three single nucleotide polymorphisms at 7p21.3, in a region encompassing the gene TMEM106B. This study also suggested a potential modifying effect of TMEM106B on disease since the association was strongest in progranulin mutation carriers. Further, the risk effect seemed to correlate with increased TMEM106B expression in patients. In the present study, we sought to replicate these three findings using an independent Flanders–Belgian cohort of primarily clinically diagnosed patients with frontotemporal lobar degeneration (n = 288). We were able to confirm the association with TMEM106B with a P-value of 0.008 for rs1990622, the top marker from the genome-wide association study [odds ratio 0.75 (95% confidence interval 0.61–0.93)]. Further, high-density single nucleotide polymorphism mapping suggested that the association was solely driven by the gene TMEM106B. Homozygous carriers of the TMEM106B protective alleles had a 50% reduced risk of developing frontotemporal lobar degeneration. However, we were unable to detect a modifying effect of the TMEM106B single nucleotide polymorphisms on onset age in progranulin mutation carriers belonging to an extended, clinical and pathological well-documented founder family segregating a progranulin null mutation. Also, we could not observe significant differences in messenger RNA expression between patients and control individuals in lymphoblast cell lines and in brain frontal cortex. In conclusion, we replicated the genetic TMEM106B association in a primarily clinically diagnosed cohort of patients with frontotemporal lobar degeneration from Flanders–Belgium. Additional studies are needed to unravel the molecular role of TMEM106B in disease onset and pathogenesis.


Stroke | 2010

Belgian Fabry Study Prevalence of Fabry Disease in a Cohort of 1000 Young Patients With Cerebrovascular Disease

Raf Brouns; Vincent Thijs; François Eyskens; Marleen Van den Broeck; Shibeshih Belachew; Christine Van Broeckhoven; Patricia Redondo; Dimitri Hemelsoet; Arnaud Fumal; Sandrine Jeangette; W. Verslegers; R Baker; Derralynn Hughes; Peter Paul De Deyn

Background and Purpose— Data on the prevalence of Fabry disease in patients with central nervous system pathology are limited and controversial. In this study, we assessed the prevalence of Fabry disease in young patients presenting with cerebrovascular disease in Belgium. Methods— In this national, prospective, multicenter study, we screened for Fabry disease in 1000 patients presenting with ischemic stroke, transient ischemic attack, or intracranial hemorrhage; unexplained white matter lesions; or vertebrobasilar dolichoectasia. In male patients, we measured &agr;-galactosidase A (&agr;-GAL A) activity in dried blood spots. Female patients were screened for mutations by exonic DNA sequencing of the &agr;-GAL A gene. Results— &agr;-GAL A activity was deficient in 19 men (3.5%), although all had normal &agr;-GAL A gene sequences. Enzymatic deficiency was confirmed on repeat assessment in 2 male patients (0.4%). We identified missense mutations in 8 unrelated female patients (1.8%): Asp313Tyr (n=5), Ala143Thr (n=2), and Ser126Gly (n=1). The pathogenicity of the 2 former missense mutations is controversial. Ser126Gly is a novel mutation that can be linked to late-onset Fabry disease. Conclusion— &agr;-GAL A deficiency may play a role in up to 1% of young patients presenting with cerebrovascular disease. These findings suggest that atypical variants of Fabry disease with late-onset cerebrovascular disease exist, although the clinical relevance is unclear in all cases.


JAMA Neurology | 2013

Distinct Clinical Characteristics of C9orf72 Expansion Carriers Compared With GRN, MAPT, and Nonmutation Carriers in a Flanders-Belgian FTLD Cohort

Tim Van Langenhove; Julie van der Zee; Ilse Gijselinck; Sebastiaan Engelborghs; Rik Vandenberghe; Mathieu Vandenbulcke; Jan De Bleecker; Anne Sieben; Jan Versijpt; Adrian Ivanoiu; Olivier Deryck; Lubina Dillen; Stéphanie Philtjens; Githa Maes; Veerle Bäumer; Marleen Van den Broeck; Maria Mattheijssens; Karin Peeters; Jean-Jacques Martin; Alex Michotte; Patrick Santens; Patrick Cras; Peter Paul De Deyn; Marc Cruts; Christine Van Broeckhoven

OBJECTIVE To characterize patients with frontotemporal lobar degeneration (FTLD) with a repeat expansion mutation in the gene C9orf72, and to determine whether there are differences in the clinical presentation compared with FTLD carriers of a mutation in GRN or MAPT or with patients with FTLD without mutation. DESIGN Patient series. SETTING Dementia clinics in Flanders, Belgium. PATIENTS Two hundred seventy-five genetically and phenotypically thoroughly characterized patients with FTLD. MAIN OUTCOME MEASURES Clinical and demographic characteristics of 26 C9orf72 expansion carriers compared with patients with a GRN or MAPT mutation, as well as patients with familial and sporadic FTLD without mutation. RESULTS C9orf72 expansion carriers developed FTLD at an early age (average, 55.3 years; range, 42-69 years), significantly earlier than in GRN mutation carriers or patients with FTLD without mutation. Mean survival (6.2 years; range, 1.5-17.0 years) was similar to other patient groups. Most developed behavioral variant frontotemporal dementia (85%), with disinhibited behavior as the prominent feature. Concomitant amyotrophic lateral sclerosis is a strong distinguishing feature for C9orf72 -associated FTLD. However, in most patients (73%), amyotrophic lateral sclerosis symptoms were absent. Compared with C9orf72 expansion carriers, nonfluent aphasia and limb apraxia were significantly more common in GRN mutation carriers. CONCLUSIONS C9orf72 -associated FTLD most often presents with early-onset behavioral variant frontotemporal dementia with disinhibition as the prominent feature, with or without amyotrophic lateral sclerosis. Based on the observed genotype-phenotype correlations between the different FTLD syndromes and different genetic causes, we propose a decision tree to guide clinical genetic testing in patients clinically diagnosed as having FTLD.


Journal of Medical Genetics | 2014

A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories

Chizuru Akimoto; A. Volk; Marka van Blitterswijk; Marleen Van den Broeck; Claire S. Leblond; Serge Lumbroso; William Camu; Birgit Neitzel; Osamu Onodera; Wouter van Rheenen; Susana Pinto; Markus Weber; Bradley Smith; Melanie Proven; Kevin Talbot; Pamela Keagle; Alessandra Chesi; Antonia Ratti; Julie van der Zee; Helena Alstermark; Anna Birve; Daniela Calini; Angelica Nordin; Daniela C Tradowsky; Walter Just; Hussein Daoud; Sabrina Angerbauer; Mariely DeJesus-Hernandez; Takuya Konno; Anjali Lloyd-Jani

Background The GGGGCC-repeat expansion in C9orf72 is the most frequent mutation found in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Most of the studies on C9orf72 have relied on repeat-primed PCR (RP-PCR) methods for detection of the expansions. To investigate the inherent limitations of this technique, we compared methods and results of 14 laboratories. Methods The 14 laboratories genotyped DNA from 78 individuals (diagnosed with ALS or FTD) in a blinded fashion. Eleven laboratories used a combination of amplicon-length analysis and RP-PCR, whereas three laboratories used RP-PCR alone; Southern blotting techniques were used as a reference. Results Using PCR-based techniques, 5 of the 14 laboratories got results in full accordance with the Southern blotting results. Only 50 of the 78 DNA samples got the same genotype result in all 14 laboratories. There was a high degree of false positive and false negative results, and at least one sample could not be genotyped at all in 9 of the 14 laboratories. The mean sensitivity of a combination of amplicon-length analysis and RP-PCR was 95.0% (73.9–100%), and the mean specificity was 98.0% (87.5–100%). Overall, a sensitivity and specificity of more than 95% was observed in only seven laboratories. Conclusions Because of the wide range seen in genotyping results, we recommend using a combination of amplicon-length analysis and RP-PCR as a minimum in a research setting. We propose that Southern blotting techniques should be the gold standard, and be made obligatory in a clinical diagnostic setting.


Neurology | 2015

Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort

Ilse Gijselinck; Sara Van Mossevelde; Julie van der Zee; Anne Sieben; Stéphanie Philtjens; Bavo Heeman; Sebastiaan Engelborghs; Mathieu Vandenbulcke; Greet De Baets; Veerle Bäumer; Ivy Cuijt; Marleen Van den Broeck; Karin Peeters; Maria Mattheijssens; Frederic Rousseau; Rik Vandenberghe; Patrick Cras; Peter Paul De Deyn; Jean-Jacques Martin; Marc Cruts; Christine Van Broeckhoven

Objective: To assess the genetic contribution of TBK1, a gene implicated in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and FTD-ALS, in Belgian FTD and ALS patient cohorts containing a significant part of genetically unresolved patients. Methods: We sequenced TBK1 in a hospital-based cohort of 482 unrelated patients with FTD and FTD-ALS and 147 patients with ALS and an extended Belgian FTD-ALS family DR158. We followed up mutation carriers by segregation studies, transcript and protein expression analysis, and immunohistochemistry. Results: We identified 11 patients carrying a loss-of-function (LOF) mutation resulting in an overall mutation frequency of 1.7% (11/629), 1.1% in patients with FTD (5/460), 3.4% in patients with ALS (5/147), and 4.5% in patients with FTD-ALS (1/22). We found 1 LOF mutation, p.Glu643del, in 6 unrelated patients segregating with disease in family DR158. Of 2 mutation carriers, brain and spinal cord was characterized by TDP-43-positive pathology. The LOF mutations including the p.Glu643del mutation led to loss of transcript or protein in blood and brain. Conclusions: TBK1 LOF mutations are the third most frequent cause of clinical FTD in the Belgian clinically based patient cohort, after C9orf72 and GRN, and the second most common cause of clinical ALS after C9orf72. These findings reinforce that FTD and ALS belong to the same disease continuum.

Collaboration


Dive into the Marleen Van den Broeck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rik Vandenberghe

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bart Dermaut

Ghent University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge