Marloes R. Tijssen
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marloes R. Tijssen.
Developmental Cell | 2011
Marloes R. Tijssen; Ana Cvejic; Anagha Joshi; Rebecca Hannah; Rita Ferreira; Ariel Forrai; Dana C. Bellissimo; S. Helen Oram; Peter A. Smethurst; Nicola K. Wilson; Xiaonan Wang; Katrin Ottersbach; Derek L. Stemple; Anthony R. Green; Willem H. Ouwehand; Berthold Göttgens
Summary Hematopoietic differentiation critically depends on combinations of transcriptional regulators controlling the development of individual lineages. Here, we report the genome-wide binding sites for the five key hematopoietic transcription factors—GATA1, GATA2, RUNX1, FLI1, and TAL1/SCL—in primary human megakaryocytes. Statistical analysis of the 17,263 regions bound by at least one factor demonstrated that simultaneous binding by all five factors was the most enriched pattern and often occurred near known hematopoietic regulators. Eight genes not previously appreciated to function in hematopoiesis that were bound by all five factors were shown to be essential for thrombocyte and/or erythroid development in zebrafish. Moreover, one of these genes encoding the PDZK1IP1 protein shared transcriptional enhancer elements with the blood stem cell regulator TAL1/SCL. Multifactor ChIP-Seq analysis in primary human cells coupled with a high-throughput in vivo perturbation screen therefore offers a powerful strategy to identify essential regulators of complex mammalian differentiation processes.
Nature Communications | 2016
Thomas Moreau; Amanda Evans; Louella Vasquez; Marloes R. Tijssen; Ying Yan; Matthew Trotter; Daniel Howard; Maria Colzani; Meera Arumugam; Wing Han Wu; Amanda Dalby; Riina Lampela; Guenaelle Bouet; Catherine M. Hobbs; Dean C. Pask; Holly Payne; Tatyana Ponomaryov; Alexander Brill; Nicole Soranzo; Willem H. Ouwehand; Roger A. Pedersen; Cedric Ghevaert
The production of megakaryocytes (MKs)—the precursors of blood platelets—from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 105 mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology.
Journal of Thrombosis and Haemostasis | 2013
Marloes R. Tijssen; Cedric Ghevaert
Cell type‐specific transcription factors regulate the repertoire of genes expressed in a cell and thereby determine its phenotype. The differentiation of megakaryocytes, the platelet progenitors, from hematopoietic stem cells is a well‐known process that can be mimicked in culture. However, the efficient formation of platelets in culture remains a challenge. Platelet formation is a complicated process including megakaryocyte maturation, platelet assembly and platelet shedding. We hypothesize that a better understanding of the transcriptional regulation of this process will allow us to influence it such that sufficient numbers of platelets can be produced for clinical applications. After an introduction to gene regulation and platelet formation, this review summarizes the current knowledge of the regulation of platelet formation by the transcription factors EVI1, GATA1, FLI1, NFE2, RUNX1, SRF and its co‐factor MKL1, and TAL1. Also covered is how some platelet disorders including myeloproliferative neoplasms, result from disturbances of the transcriptional regulation. These disorders give us invaluable insights into the crucial role these transcription factors play in platelet formation. Finally, there is discussion of how a better understanding of these processes will be needed to allow for efficient production of platelets in vitro.
Journal of Virology | 2005
Manuel A. F. V. Gonçalves; Gijsbert P. van Nierop; Marloes R. Tijssen; Pierre Lefesvre; Shoshan Knaän-Shanzer; Ietje van der Velde; Dirk W. van Bekkum; Dinko Valerio; Antoine A.F. de Vries
ABSTRACT Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, making it a potential target for gene therapy. There is, however, a scarcity of vectors that can accommodate the 14-kb DMD cDNA and permanently genetically correct muscle tissue in vivo or proliferating myogenic progenitors in vitro for use in autologous transplantation. Here, a dual high-capacity adenovirus-adeno-associated virus (hcAd/AAV) vector with two full-length human dystrophin-coding sequences flanked by AAV integration-enhancing elements is presented. These vectors are generated from input linear monomeric DNA molecules consisting of the Ad origin of replication and packaging signal followed by the recently identified AAV DNA integration efficiency element (p5IEE), the transgene(s) of interest, and the AAV inverted terminal repeat (ITR). After infection of producer cells with a helper Ad vector, the Ad DNA replication machinery, in concert with the AAV ITR-dependent dimerization, leads to the assembly of vector genomes with a tail-to-tail configuration that are efficiently amplified and packaged into Ad capsids. These dual hcAd/AAV hybrid vectors were used to express the dystrophin-coding sequence in rat cardiomyocytes in vitro and to restore dystrophin synthesis in the muscle tissues of mdx mice in vivo. Introduction into human cells of chimeric genomes, which contain a structure reminiscent of AAV proviral DNA, resulted in AAV Rep-dependent targeted DNA integration into the AAVS1 locus on chromosome 19. Dual hcAd/AAV hybrid vectors may thus be particularly useful to develop safe treatment modalities for diseases such as DMD that rely on efficient transfer and stable expression of large genes.
PLOS Genetics | 2011
Dirk S. Paul; James Nisbet; Tsun-Po Yang; Stuart Meacham; Augusto Rendon; Katta Hautaviita; Jonna Tallila; Jacqui White; Marloes R. Tijssen; Suthesh Sivapalaratnam; Hanneke Basart; Mieke D. Trip; Berthold Göttgens; Nicole Soranzo; Willem H. Ouwehand; Panos Deloukas
Turning genetic discoveries identified in genome-wide association (GWA) studies into biological mechanisms is an important challenge in human genetics. Many GWA signals map outside exons, suggesting that the associated variants may lie within regulatory regions. We applied the formaldehyde-assisted isolation of regulatory elements (FAIRE) method in a megakaryocytic and an erythroblastoid cell line to map active regulatory elements at known loci associated with hematological quantitative traits, coronary artery disease, and myocardial infarction. We showed that the two cell types exhibit distinct patterns of open chromatin and that cell-specific open chromatin can guide the finding of functional variants. We identified an open chromatin region at chromosome 7q22.3 in megakaryocytes but not erythroblasts, which harbors the common non-coding sequence variant rs342293 known to be associated with platelet volume and function. Resequencing of this open chromatin region in 643 individuals provided strong evidence that rs342293 is the only putative causative variant in this region. We demonstrated that the C- and G-alleles differentially bind the transcription factor EVI1 affecting PIK3CG gene expression in platelets and macrophages. A protein–protein interaction network including up- and down-regulated genes in Pik3cg knockout mice indicated that PIK3CG is associated with gene pathways with an established role in platelet membrane biogenesis and thrombus formation. Thus, rs342293 is the functional common variant at this locus; to the best of our knowledge this is the first such variant to be elucidated among the known platelet quantitative trait loci (QTLs). Our data suggested a molecular mechanism by which a non-coding GWA index SNP modulates platelet phenotype.
Blood | 2013
Liat Goldberg; Marloes R. Tijssen; Yehudit Birger; Rebecca Hannah; Sarah Kinston; Judith Schütte; Dominik Beck; Kathy Knezevic; Ginette Schiby; Jasmine Jacob-Hirsch; Anat Biran; Guido Marcucci; Clara D. Bloomfield; Peter D. Aplan; John E. Pimanda; Berthold Göttgens; Shai Izraeli
The ETS transcription factor ERG plays a central role in definitive hematopoiesis, and its overexpression in acute myeloid leukemia (AML) is associated with a stem cell signature and poor prognosis. Yet how ERG causes leukemia is unclear. Here we show that pan-hematopoietic ERG expression induces an early progenitor myeloid leukemia in transgenic mice. Integrated genome-scale analysis of gene expression and ERG binding profiles revealed that ERG activates a transcriptional program similar to human AML stem/progenitor cells and to human AML with high ERG expression. This transcriptional program was associated with activation of RAS that was required for leukemia cells growth in vitro and in vivo. We further show that ERG induces expression of the Pim1 kinase oncogene through a novel hematopoietic enhancer validated in transgenic mice and human CD34(+) normal and leukemic cells. Pim1 inhibition disrupts growth and induces apoptosis of ERG-expressing leukemic cells. The importance of the ERG/PIM1 axis is further underscored by the poorer prognosis of AML highly expressing ERG and PIM1. Thus, integrative genomic analysis demonstrates that ERG causes myeloid progenitor leukemia characterized by an induction of leukemia stem cell transcriptional programs. Pim1 and the RAS pathway are potential therapeutic targets of these high-risk leukemias.
Blood | 2012
Sylvia T. Nurnberg; Augusto Rendon; Peter A. Smethurst; Dirk S. Paul; Katrin Voss; Jonathan N. Thon; Heather Lloyd-Jones; Jennifer Sambrook; Marloes R. Tijssen; Joseph E. Italiano; Panos Deloukas; Berthold Göttgens; Nicole Soranzo; Willem H. Ouwehand
We recently identified 68 genomic loci where common sequence variants are associated with platelet count and volume. Platelets are formed in the bone marrow by megakaryocytes, which are derived from hematopoietic stem cells by a process mainly controlled by transcription factors. The homeobox transcription factor MEIS1 is uniquely transcribed in megakaryocytes and not in the other lineage-committed blood cells. By ChIP-seq, we show that 5 of the 68 loci pinpoint a MEIS1 binding event within a group of 252 MK-overexpressed genes. In one such locus in DNM3, regulating platelet volume, the MEIS1 binding site falls within a region acting as an alternative promoter that is solely used in megakaryocytes, where allelic variation dictates different levels of a shorter transcript. The importance of dynamin activity to the latter stages of thrombopoiesis was confirmed by the observation that the inhibitor Dynasore reduced murine proplatelet for-mation in vitro.
Blood | 2015
Lital Shaham; Elena Vendramini; Yubin Ge; Yaron Goren; Yehudit Birger; Marloes R. Tijssen; Maureen McNulty; Ifat Geron; Omer Schwartzman; Liat Goldberg; Stella T. Chou; Holly Pitman; Mitchell J. Weiss; Shulamit Michaeli; Benjamin Sredni; Berthold Göttgens; John D. Crispino; Jeffrey W. Taub; Shai Izraeli
Children with Down syndrome (DS) are at increased risk for acute myeloid leukemias (ML-DS) characterized by mixed megakaryocytic and erythroid phenotype and by acquired mutations in the GATA1 gene resulting in a short GATA1s isoform. The chromosome 21 microRNA (miR)-125b cluster has been previously shown to cooperate with GATA1s in transformation of fetal hematopoietic progenitors. In this study, we report that the expression of miR-486-5p is increased in ML-DS compared with non-DS acute megakaryocytic leukemias (AMKLs). miR-486-5p is regulated by GATA1 and GATA1s that bind to the promoter of its host gene ANK1. miR-486-5p is highly expressed in mouse erythroid precursors and knockdown (KD) in ML-DS cells reduced their erythroid phenotype. Ectopic expression and KD of miR-486-5p in primary fetal liver hematopoietic progenitors demonstrated that miR-486-5p cooperates with Gata1s to enhance their self renewal. Consistent with its activation of AKT, overexpression and KD experiments showed its importance for growth and survival of human leukemic cells. Thus, miR-486-5p cooperates with GATA1s in supporting the growth and survival, and the aberrant erythroid phenotype of the megakaryocytic leukemias of DS.
Experimental Hematology | 2008
Jo Anna Reems; Wenjing Wang; Ken Tsubata; Najla Abdurrahman; Birgitta Sundell; Marloes R. Tijssen; Ellen van der Schoot; Franca di Summa; Sunita Patel–Hett; Joseph E. Italiano; Diana M. Gilligan
High-density oligonucleotide microarrays were used to compare gene expression profiles from uncultured CD34+/CD38lo cells and culture-derived megakaryocytes (MKs). As previously published, three replicate microarray data sets from three different sources of organ donor marrow were analyzed using the software program Rosetta Resolver. After setting a stringent p value of <or=0.001 with a fold change cutoff of three or more in expression level, dynamin 3 (DNM3) was identified to be differentially expressed during the course of MK development with a mean fold-change of 8.2+/-2.1 (mean+/-standard deviation). DNM3 is a member of a family of mechanochemical enzymes (DNM1, DNM2, and DNM3) known for their participation in membrane dynamics by hydrolyzing nucleotides to link cellular membranes to the actin cytoskeleton. Real-time quantitative polymerase chain reaction confirmed that DNM3 increased by 20.7-+/-3.4-fold (n=4, p=0.09) during megakaryocytopoiesis and Western blot analysis showed that DNM3 protein was expressed in human MKs. Confocal microscopy revealed that DNM3 was distributed diffusely throughout the cytoplasm of MKs with a punctate appearance in proplatelet processes. Immunogold electron microscopy also showed that DNM3 is widely distributed in the cytoplasm of MKs, with no apparent localization to specific organelles. The open reading frame of DNM3 was cloned from culture-derived human MKs and determined to be 100% identical to the protein encoded by the DNM3 transcript variant ENST00000367731 published in the Ensemble database. Overexpression of DNM3 in umbilical cord blood CD34+ cells resulted in an increase in total nucleated cells, an amplification of total colony-forming cells and colony-forming unit-megakaryocytes, and a concomitant increase in the expression of nuclear factor erythroid 2 (NF-E2) and beta-tubulin. Together these findings provide the first evidence that a member of the dynamin family of mechanochemical enzymes is present in human MKs and indicate that DNM3 is an excellent candidate for playing an important role in mediating cytoskeleton and membrane changes that occur during MK/platelet development.
Leukemia | 2008
Marloes R. Tijssen; P.B. van Hennik; F di Summa; Jaap-Jan Zwaginga; C. E. Van Der Schoot; Carlijn Voermans
Transplantation of human peripheral blood CD34-positive cells in combination with ex vivo generated megakaryocytes results in fast platelet formation in NOD/SCID mice