Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta D. Costa is active.

Publication


Featured researches published by Marta D. Costa.


Molecular Biology and Evolution | 2012

The Expansion of mtDNA Haplogroup L3 within and out of Africa

Pedro Soares; Farida Alshamali; Joana B. Pereira; Verónica Fernandes; Nuno Silva; Carla Afonso; Marta D. Costa; Eliška Musilová; Vincent Macaulay; Martin B. Richards; Viktor Černý; Luísa Pereira

Although fossil remains show that anatomically modern humans dispersed out of Africa into the Near East ∼100 to 130 ka, genetic evidence from extant populations has suggested that non-Africans descend primarily from a single successful later migration. Within the human mitochondrial DNA (mtDNA) tree, haplogroup L3 encompasses not only many sub-Saharan Africans but also all ancient non-African lineages, and its age therefore provides an upper bound for the dispersal out of Africa. An analysis of 369 complete African L3 sequences places this maximum at ∼70 ka, virtually ruling out a successful exit before 74 ka, the date of the Toba volcanic supereruption in Sumatra. The similarity of the age of L3 to its two non-African daughter haplogroups, M and N, suggests that the same process was likely responsible for both the L3 expansion in Eastern Africa and the dispersal of a small group of modern humans out of Africa to settle the rest of the world. The timing of the expansion of L3 suggests a link to improved climatic conditions after ∼70 ka in Eastern and Central Africa rather than to symbolically mediated behavior, which evidently arose considerably earlier. The L3 mtDNA pool within Africa suggests a migration from Eastern Africa to Central Africa ∼60 to 35 ka and major migrations in the immediate postglacial again linked to climate. The largest population size increase seen in the L3 data is 3-4 ka in Central Africa, corresponding to Bantu expansions, leading diverse L3 lineages to spread into Eastern and Southern Africa in the last 3-2 ka.


American Journal of Human Genetics | 2009

The Diversity Present in 5140 Human Mitochondrial Genomes

Luísa Pereira; Fernando Freitas; Verónica Fernandes; Joana B. Pereira; Marta D. Costa; Stephanie Costa; Valdemar Máximo; Vincent Macaulay; Ricardo Rocha; David C. Samuels

We analyzed the current status (as of the end of August 2008) of human mitochondrial genomes deposited in GenBank, amounting to 5140 complete or coding-region sequences, in order to present an overall picture of the diversity present in the mitochondrial DNA of the global human population. To perform this task, we developed mtDNA-GeneSyn, a computer tool that identifies and exhaustedly classifies the diversity present in large genetic data sets. The diversity observed in the 5140 human mitochondrial genomes was compared with all possible transitions and transversions from the standard human mitochondrial reference genome. This comparison showed that tRNA and rRNA secondary structures have a large effect in limiting the diversity of the human mitochondrial sequences, whereas for the protein-coding genes there is a bias toward less variation at the second codon positions. The analysis of the observed amino acid variations showed a tolerance of variations that convert between the amino acids V, I, A, M, and T. This defines a group of amino acids with similar chemical properties that can interconvert by a single transition.


Nature Communications | 2013

A substantial prehistoric European ancestry amongst Ashkenazi maternal lineages

Marta D. Costa; Joana B. Pereira; Maria Pala; Verónica Fernandes; Anna Olivieri; Alessandro Achilli; Ugo A. Perego; Sergei Rychkov; Oksana Yu. Naumova; Jiři Hatina; Scott R. Woodward; Ken Khong Eng; Vincent Macaulay; Martin Carr; Pedro Soares; Luísa Pereira; Martin B. Richards

The origins of Ashkenazi Jews remain highly controversial. Like Judaism, mitochondrial DNA is passed along the maternal line. Its variation in the Ashkenazim is highly distinctive, with four major and numerous minor founders. However, due to their rarity in the general population, these founders have been difficult to trace to a source. Here we show that all four major founders, ~40% of Ashkenazi mtDNA variation, have ancestry in prehistoric Europe, rather than the Near East or Caucasus. Furthermore, most of the remaining minor founders share a similar deep European ancestry. Thus the great majority of Ashkenazi maternal lineages were not brought from the Levant, as commonly supposed, nor recruited in the Caucasus, as sometimes suggested, but assimilated within Europe. These results point to a significant role for the conversion of women in the formation of Ashkenazi communities, and provide the foundation for a detailed reconstruction of Ashkenazi genealogical history.


BMC Evolutionary Biology | 2010

Population expansion in the North African Late Pleistocene signalled by mitochondrial DNA haplogroup U6

Luísa Pereira; Nuno Silva; Ricardo Franco-Duarte; Verónica Fernandes; Joana B. Pereira; Marta D. Costa; Haidé Martins; Pedro Soares; Doron M. Behar; Martin B. Richards; Vincent Macaulay

BackgroundThe archaeology of North Africa remains enigmatic, with questions of population continuity versus discontinuity taking centre-stage. Debates have focused on population transitions between the bearers of the Middle Palaeolithic Aterian industry and the later Upper Palaeolithic populations of the Maghreb, as well as between the late Pleistocene and Holocene.ResultsImproved resolution of the mitochondrial DNA (mtDNA) haplogroup U6 phylogeny, by the screening of 39 new complete sequences, has enabled us to infer a signal of moderate population expansion using Bayesian coalescent methods. To ascertain the time for this expansion, we applied both a mutation rate accounting for purifying selection and one with an internal calibration based on four approximate archaeological dates: the settlement of the Canary Islands, the settlement of Sardinia and its internal population re-expansion, and the split between haplogroups U5 and U6 around the time of the first modern human settlement of the Near East.ConclusionsA Bayesian skyline plot placed the main expansion in the time frame of the Late Pleistocene, around 20 ka, and spatial smoothing techniques suggested that the most probable geographic region for this demographic event was to the west of North Africa. A comparison with U6s European sister clade, U5, revealed a stronger population expansion at around this time in Europe. Also in contrast with U5, a weak signal of a recent population expansion in the last 5,000 years was observed in North Africa, pointing to a moderate impact of the late Neolithic on the local population size of the southern Mediterranean coast.


Journal of Colloid and Interface Science | 2014

Novel electrochemical sensor based on N-doped carbon nanotubes and Fe3O4 nanoparticles: simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid.

Diana M. Fernandes; Marta D. Costa; Clara Pereira; B. Bachiller-Baeza; I. Rodríguez-Ramos; A. Guerrero-Ruiz; Cristina Freire

A new modified electrode based on N-doped carbon nanotubes functionalized with Fe3O4 nanoparticles (Fe3O4@CNT-N) has been prepared and applied on the simultaneous electrochemical determination of small biomolecules such as dopamine (DA), uric acid (UA) and ascorbic acid (AA) using voltammetric methods. The unique properties of CNT-N and Fe3O4 nanoparticles individually and the synergetic effect between them led to an improved electrocatalytic activity toward the oxidation of AA, DA and UA. The overlapping anodic peaks of these three biomolecules could be resolved from each other due to their lower oxidation potentials and enhanced oxidation currents when using the Fe3O4@CNT-N modified electrode. The linear response ranges for the square wave voltammetric determination of AA, DA and UA were 5-235, 2.5-65 and 2.5-85μmoldm(-3) with detection limit (S/N=3) of 0.24, 0.050 and 0.047μmoldm(-3), respectively. These results show that Fe3O4@CNT-N nanocomposite is a promising candidate of cutting-edge electrode materials for electrocatalytic applications.


BMC Evolutionary Biology | 2010

The trans-Saharan slave trade - clues from interpolation analyses and high-resolution characterization of mitochondrial DNA lineages

Nourdin Harich; Marta D. Costa; Verónica Fernandes; Mostafa Kandil; Joana B. Pereira; Nuno Silva; Luísa Pereira

BackgroundA proportion of 1/4 to 1/2 of North African female pool is made of typical sub-Saharan lineages, in higher frequencies as geographic proximity to sub-Saharan Africa increases. The Sahara was a strong geographical barrier against gene flow, at least since 5,000 years ago, when desertification affected a larger region, but the Arab trans-Saharan slave trade could have facilitate enormously this migration of lineages. Till now, the genetic consequences of these forced trans-Saharan movements of people have not been ascertained.ResultsThe distribution of the main L haplogroups in North Africa clearly reflects the known trans-Saharan slave routes: West is dominated by L1b, L2b, L2c, L2d, L3b and L3d; the Center by L3e and some L3f and L3w; the East by L0a, L3h, L3i, L3x and, in common with the Center, L3f and L3w; while, L2a is almost everywhere. Ages for the haplogroups observed in both sides of the Saharan desert testify the recent origin (holocenic) of these haplogroups in sub-Saharan Africa, claiming a recent introduction in North Africa, further strengthened by the no detection of local expansions.ConclusionsThe interpolation analyses and complete sequencing of present mtDNA sub-Saharan lineages observed in North Africa support the genetic impact of recent trans-Saharan migrations, namely the slave trade initiated by the Arab conquest of North Africa in the seventh century. Sub-Saharan people did not leave traces in the North African maternal gene pool for the time of its settlement, some 40,000 years ago.


Proceedings of the Royal Society B: Biological Sciences | 2017

Reconciling evidence from ancient and contemporary genomes: a major source for the European Neolithic within Mediterranean Europe

Joana B. Pereira; Marta D. Costa; Daniel Vieira; Maria Pala; Lisa Bamford; Nourdin Harich; Lotfi Cherni; Farida Alshamali; Jiři Hatina; Sergey Rychkov; Gheorghe Stefanescu; Turi King; Antonio Torroni; Pedro Soares; Luísa Pereira; Martin B. Richards

Important gaps remain in our understanding of the spread of farming into Europe, due partly to apparent contradictions between studies of contemporary genetic variation and ancient DNA. It seems clear that farming was introduced into central, northern, and eastern Europe from the south by pioneer colonization. It is often argued that these dispersals originated in the Near East, where the potential source genetic pool resembles that of the early European farmers, but clear ancient DNA evidence from Mediterranean Europe is lacking, and there are suggestions that Mediterranean Europe may have resembled the Near East more than the rest of Europe in the Mesolithic. Here, we test this proposal by dating mitogenome founder lineages from the Near East in different regions of Europe. We find that whereas the lineages date mainly to the Neolithic in central Europe and Iberia, they largely date to the Late Glacial period in central/eastern Mediterranean Europe. This supports a scenario in which the genetic pool of Mediterranean Europe was partly a result of Late Glacial expansions from a Near Eastern refuge, and that this formed an important source pool for subsequent Neolithic expansions into the rest of Europe.


Scientific Reports | 2017

Origin and spread of human mitochondrial DNA haplogroup U7

Hovhannes Sahakyan; Baharak Hooshiar Kashani; Rakesh Tamang; Alena Kushniarevich; Amirtharaj Francis; Marta D. Costa; Ajai Kumar Pathak; Zaruhi Khachatryan; Indu Sharma; Mannis van Oven; Jüri Parik; Hrant Hovhannisyan; Ene Metspalu; Erwan Pennarun; Monika Karmin; Erika Tamm; Kristiina Tambets; Ardeshir Bahmanimehr; Tuuli Reisberg; Maere Reidla; Alessandro Achilli; Anna Olivieri; Francesca Gandini; Ugo A. Perego; Nadia Al-Zahery; Massoud Houshmand; Mohammad Hossein Sanati; Pedro Soares; Ekta Rai; Jelena Šarac

Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16–19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that – analysed alongside 100 published ones – enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region.


Human Mutation | 2015

Fine Time Scaling of Purifying Selection on Human Nonsynonymous mtDNA Mutations Based on the Worldwide Population Tree and Mother-Child Pairs.

Bruno Cavadas; Pedro Soares; Rui Camacho; Andreia Brandão; Marta D. Costa; Verónica Fernandes; Joana B. Pereira; Teresa Rito; David C. Samuels; Luísa Pereira

A high‐resolution mtDNA phylogenetic tree allowed us to look backward in time to investigate purifying selection. Purifying selection was very strong in the last 2,500 years, continuously eliminating pathogenic mutations back until the end of the Younger Dryas (∼11,000 years ago), when a large population expansion likely relaxed selection pressure. This was preceded by a phase of stable selection until another relaxation occurred in the out‐of‐Africa migration. Demography and selection are closely related: expansions led to relaxation of selection and higher pathogenicity mutations significantly decreased the growth of descendants. The only detectible positive selection was the recurrence of highly pathogenic nonsynonymous mutations (m.3394T>C‐m.3397A>G‐m.3398T>C) at interior branches of the tree, preventing the formation of a dinucleotide STR (TATATA) in the MT‐ND1 gene. At the most recent time scale in 124 mother–children transmissions, purifying selection was detectable through the loss of mtDNA variants with high predicted pathogenicity. A few haplogroup‐defining sites were also heteroplasmic, agreeing with a significant propensity in 349 positions in the phylogenetic tree to revert back to the ancestral variant. This nonrandom mutation property explains the observation of heteroplasmic mutations at some haplogroup‐defining sites in sequencing datasets, which may not indicate poor quality as has been claimed.


American Journal of Human Genetics | 2012

The Arabian Cradle: Mitochondrial Relicts of the First Steps along the Southern Route out of Africa

Verónica Fernandes; Farida Alshamali; Marco G. Alves; Marta D. Costa; Joana B. Pereira; Nuno Silva; Lotfi Cherni; Nourdin Harich; Viktor Cerny; Pedro Soares; Martin B. Richards; Luísa Pereira

Collaboration


Dive into the Marta D. Costa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiři Hatina

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge