Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martha S. Windrem is active.

Publication


Featured researches published by Martha S. Windrem.


Nature Medicine | 2004

Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain

Martha S. Windrem; Marta Nunes; William K Rashbaum; Theodore H. Schwartz; Robert A Goodman; Guy M. McKhann; Neeta S. Roy; Steven A. Goldman

Both late-gestation and adult human forebrain contain large numbers of oligodendrocyte progenitor cells (OPCs). These cells may be identified by their A2B5+PSA-NCAM− phenotype (positive for the early oligodendrocyte marker A2B5 and negative for the polysialylated neural cell adhesion molecule). We used dual-color fluorescence-activated cell sorting (FACS) to extract OPCs from 21- to 23-week-old fetal human forebrain, and A2B5 selection to extract these cells from adult white matter. When xenografted to the forebrains of newborn shiverer mice, fetal OPCs dispersed throughout the white matter and developed into oligodendrocytes and astrocytes. By 12 weeks, the host brains showed extensive myelin production, compaction and axonal myelination. Isolates of OPCs derived from adult human white matter also myelinated shiverer mouse brain, but much more rapidly than their fetal counterparts, achieving widespread and dense myelin basic protein (MBP) expression by 4 weeks after grafting. Adult OPCs generated oligodendrocytes more efficiently than fetal OPCs, and ensheathed more host axons per donor cell than fetal cells. Both fetal and adult OPC phenotypes mediated the extensive and robust myelination of congenitally dysmyelinated host brain, although their differences suggested their use for different disease targets.


Cell Stem Cell | 2013

Human iPSC-Derived Oligodendrocyte Progenitor Cells Can Myelinate and Rescue a Mouse Model of Congenital Hypomyelination

Su Wang; Janna Bates; Xiaojie Li; Steven Schanz; Devin Chandler-Militello; Corri Levine; Nimet Maherali; Lorenz Studer; Martha S. Windrem; Steven A. Goldman

Neonatal engraftment by oligodendrocyte progenitor cells (OPCs) permits the myelination of the congenitally dysmyelinated brain. To establish a potential autologous source of these cells, we developed a strategy by which to differentiate human induced pluripotent stem cells (hiPSCs) into OPCs. From three hiPSC lines, as well as from human embryonic stem cells (hESCs), we generated highly enriched OLIG2(+)/PDGFRα(+)/NKX2.2(+)/SOX10(+) human OPCs, which could be further purified using fluorescence-activated cell sorting. hiPSC OPCs efficiently differentiated into both myelinogenic oligodendrocytes and astrocytes, in vitro and in vivo. Neonatally engrafted hiPSC OPCs robustly myelinated the brains of myelin-deficient shiverer mice and substantially increased their survival. The speed and efficiency of myelination by hiPSC OPCs was higher than that previously observed using fetal-tissue-derived OPCs, and no tumors from these grafts were noted as long as 9 months after transplant. These results suggest the potential utility of hiPSC-derived OPCs in treating disorders of myelin loss.


Cell Stem Cell | 2013

Forebrain Engraftment by Human Glial Progenitor Cells Enhances Synaptic Plasticity and Learning in Adult Mice

Xiaoning Han; Michael Chen; Fushun Wang; Martha S. Windrem; Su Wang; Steven Shanz; Qiwu Xu; Nancy Ann Oberheim; Lane K. Bekar; Sarah J. Betstadt; Alcino J. Silva; Takahiro Takano; Steven A. Goldman

Human astrocytes are larger and more complex than those of infraprimate mammals, suggesting that their role in neural processing has expanded with evolution. To assess the cell-autonomous and species-selective properties of human glia, we engrafted human glial progenitor cells (GPCs) into neonatal immunodeficient mice. Upon maturation, the recipient brains exhibited large numbers and high proportions of both human glial progenitors and astrocytes. The engrafted human glia were gap-junction-coupled to host astroglia, yet retained the size and pleomorphism of hominid astroglia, and propagated Ca2+ signals 3-fold faster than their hosts. Long-term potentiation (LTP) was sharply enhanced in the human glial chimeric mice, as was their learning, as assessed by Barnes maze navigation, object-location memory, and both contextual and tone fear conditioning. Mice allografted with murine GPCs showed no enhancement of either LTP or learning. These findings indicate that human glia differentially enhance both activity-dependent plasticity and learning in mice.


Cell Stem Cell | 2008

Neonatal Chimerization with Human Glial Progenitor Cells Can Both Remyelinate and Rescue the Otherwise Lethally Hypomyelinated Shiverer Mouse

Martha S. Windrem; Steven Schanz; Min Guo; Guo-Feng Tian; Vaughn Washco; Nancy Stanwood; Matthew N. Rasband; Neeta S. Roy; Leif A. Havton; Su Wang; Steven A. Goldman

Congenitally hypomyelinated shiverer mice fail to generate compact myelin and die by 18-21 weeks of age. Using multifocal anterior and posterior fossa delivery of sorted fetal human glial progenitor cells into neonatal shiverer x rag2(-/-) mice, we achieved whole neuraxis myelination of the engrafted hosts, which in a significant fraction of cases rescued this otherwise lethal phenotype. The transplanted mice exhibited greatly prolonged survival with progressive resolution of their neurological deficits. Substantial myelination in multiple regions was accompanied by the acquisition of normal nodes of Ranvier and transcallosal conduction velocities, ultrastructurally normal and complete myelination of most axons, and a restoration of a substantially normal neurological phenotype. Notably, the resultant mice were cerebral chimeras, with murine gray matter but a predominantly human white matter glial composition. These data demonstrate that the neonatal transplantation of human glial progenitor cells can effectively treat disorders of congenital and perinatal hypomyelination.


Journal of Neuroscience Research | 2002

Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain.

Martha S. Windrem; Neeta S. Roy; Jeremy Wang; Marta Nunes; Abdellatif Benraiss; Robert R. Goodman; Guy M. McKhann; Steven A. Goldman

A distinct population of white matter progenitor cells (WMPCs), competent but not committed to generate oligodendrocytes, remains ubiquitous in the adult human subcortical white matter. These cells are present in both sexes and into senescence and may constitute as much as 4% of the cells of adult human capsular white matter. Transduction of adult human white matter dissociates with plasmids bearing early oligodendrocytic promoters driving fluorescent reporters permits the separation of these cells at high yield and purity, as does separation based on their expression of A2B5 immunoreactivity. Isolates of these cells survive xenograft to lysolecithin‐demyelinated brain and migrate rapidly to infiltrate these lesions, without extending into normal white matter. Within several weeks, implanted progenitors mature as oligodendrocytes, and develop myelin‐associated antigens. Lentiviral tagging with green fluorescent protein confirmed that A2B5‐sorted progenitors develop myelin basic protein expression within regions of demyelination and that they fail to migrate when implanted into normal brain. Adult human white matter progenitor cells can thus disperse widely through regions of experimental demyelination and are able to differentiate as myelinating oligodendrocytes. This being the case, they may constitute appropriate vectors for cell‐based remyelination strategies.


Nature Biotechnology | 2004

Telomerase immortalization of neuronally restricted progenitor cells derived from the human fetal spinal cord

Neeta S. Roy; Takahiro Nakano; H. Michael Keyoung; Martha S. Windrem; William K Rashbaum; M. Lita Alonso; Jian Kang; Weiguo Peng; Melissa K. Carpenter; Jane Lin; Steven A. Goldman

Lineage-restricted progenitors of the central nervous system (CNS) are not readily expandable because their mitotic competence is limited. Here we used retroviral overexpression of human telomerase reverse transcriptase (hTERT) to immortalize progenitors from human fetal spinal cord. The hTERT-immortalized cells divided in basic fibroblast growth factor (bFGF) expressed high telomerase activity, and gave rise to phenotypically restricted subpopulations of either glia or neurons. The latter included a prototypic line, hSC11V-TERT, that gave rise only to neurons. These included both chx10+ interneurons and Islet1+/Hb9+/ChAT+ motor neurons; the latter were recognized by green fluorescent protein (GFP) driven by the Hb9 enhancer. The neurons were postmitotic and achieved electrophysiologic competence. Upon xenograft to both fetal rat brain and injured adult spinal cord, they matured as neurons and survived for 6 months, with no evident tumorigenesis. The cells have survived >168 doublings in vitro, with karyotypic normalcy and without replicative senescence. hTERT overexpression thus permits the generation of progenitor lines able to give rise to phenotypically restricted neurons.


Nature Biotechnology | 2011

CD140a identifies a population of highly myelinogenic, migration-competent and efficiently engrafting human oligodendrocyte progenitor cells

Fraser J. Sim; Crystal R. McClain; Steven Schanz; Tricia L Protack; Martha S. Windrem; Steven A. Goldman

Experimental animals with myelin disorders can be treated by transplanting oligodendrocyte progenitor cells (OPCs) into the affected brain or spinal cord. OPCs have been isolated by their expression of gangliosides recognized by mAb A2B5, but this marker also identifies lineage-restricted astrocytes and immature neurons. To establish a more efficient means of isolating myelinogenic OPCs, we sorted fetal human forebrain cells for CD140a, an epitope of platelet derived growth factor receptor (PDGFR)α, which is differentially expressed by OPCs. CD140a+ cells were isolated as mitotic bipotential progenitors that initially expressed neither mature neuronal nor astrocytic phenotypic markers, yet could be instructed to either oligodendrocyte or astrocyte fate in vitro. Transplanted CD140a+ cells were highly migratory and robustly myelinated the hypomyelinated shiverer mouse brain more rapidly and efficiently than did A2B5+cells. Microarray analysis of CD140a+ cells revealed overexpression of the oligodendroglial marker CD9, suggesting that CD9+/CD140a+ cells may constitute an even more highly enriched population of myelinogenic progenitor cells.


Science | 2012

Glial Progenitor Cell–Based Treatment and Modeling of Neurological Disease

Steven A. Goldman; Martha S. Windrem

The diseases of myelin are among the most prevalent and disabling conditions in neurology. These diseases include both the vascular and inflammatory demyelinating disorders of adulthood, as well as the childhood leukodystrophies and cerebral palsy. These fundamentally glial disorders may be amenable to treatment by glial progenitor cells (GPCs), which give rise to astroglia and myelin-producing oligodendrocytes. Given the development of new methods for generating and isolating human GPCs, the myelin disorders may now be compelling targets for cell-based therapy. In addition, the efficient engraftment and expansion of human GPCs in murine hosts has led to the development of human glial chimeric mouse brains, which provides new opportunities for studying the species-specific roles of human glia in cognition, as well as in disease pathogenesis.


Philosophical Transactions of the Royal Society B | 2006

Cell replacement therapy in neurological disease

Steven A. Goldman; Martha S. Windrem

Diseases of the brain and spinal cord represent especially daunting challenges for cell-based strategies of repair, given the multiplicity of cell types within the adult central nervous system, and the precision with which they must interact in both space and time. Nonetheless, a number of diseases are especially appropriate for cell-based therapy, in particular those in which single phenotypes are lost, and in which the re-establishment of vectorially specific connections is not entirely requisite for therapeutic benefit. We review here a set of potential therapeutic indications that meet these criteria as potentially benefiting from the transplantation of neural stem and progenitor cells. These include: (i) transplantation of phenotypically restricted neuronal progenitor cells into diseases of a single neuronal phenotype, such as Parkinsons disease; (ii) implantation of mixed progenitor pools into diseases characterized by the loss of a limited number of discrete phenotypes, such as spinal cord injury and the motor neuronopathies; (iii) transplantation of glial and nominally oligodendrocytic progenitor cells as a means of treating disorders of myelin; and (iv) transplantation of neural stem cells as a means of treating lysosomal storage disorders and other diseases of enzymatic deficiency. Among the diseases potentially approachable by these strategies, the myelin disorders, including the paediatric leucodystrophies as well as adult traumatic and inflammatory demyelinations, may present the most compelling targets for cell-based neurological therapy.


The Journal of Neuroscience | 2014

A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia.

Martha S. Windrem; Steven Schanz; Carolyn Morrow; Jared Munir; Devin Chandler-Militello; Su Wang; Steven A. Goldman

Neonatally transplanted human glial progenitor cells (hGPCs) densely engraft and myelinate the hypomyelinated shiverer mouse. We found that, in hGPC-xenografted mice, the human donor cells continue to expand throughout the forebrain, systematically replacing the host murine glia. The differentiation of the donor cells is influenced by the host environment, such that more donor cells differentiated as oligodendrocytes in the hypomyelinated shiverer brain than in myelin wild-types, in which hGPCs were more likely to remain as progenitors. Yet in each recipient, both the number and relative proportion of mouse GPCs fell as a function of time, concomitant with the mitotic expansion and spread of donor hGPCs. By a year after neonatal xenograft, the forebrain GPC populations of implanted mice were largely, and often entirely, of human origin. Thus, neonatally implanted hGPCs outcompeted and ultimately replaced the host population of mouse GPCs, ultimately generating mice with a humanized glial progenitor population. These human glial chimeric mice should permit us to define the specific contributions of glia to a broad variety of neurological disorders, using human cells in vivo.

Collaboration


Dive into the Martha S. Windrem's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven Schanz

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Su Wang

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Devin Chandler-Militello

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdellatif Benraiss

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul J. Tesar

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge