Martin Andrews
Met Office
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Andrews.
Geophysical Research Letters | 2014
Adam A. Scaife; Maria Athanassiadou; Martin Andrews; Alberto Arribas; Mark P. Baldwin; Nick Dunstone; Jeff R. Knight; Craig MacLachlan; Elisa Manzini; Wolfgang A. Müller; Holger Pohlmann; Doug Smith; Tim Stockdale; Andrew Williams
The predictability of the quasi-biennial oscillation (QBO) is examined in initialized climate forecasts extending out to lead times of years. We use initialized retrospective predictions made with coupled ocean-atmosphere climate models that have an internally generated QBO. We demonstrate predictability of the QBO extending more than 3 years into the future, well beyond timescales normally associated with internal atmospheric processes. Correlation scores with observational analyses exceed 0.7 at a lead time of 12 months. We also examine the variation of predictability with season and QBO phase and find that skill is lowest in winter. An assessment of perfect predictability suggests that higher skill may be achievable through improved initialization and climate modeling of the QBO, although this may depend on the realism of gravity wave source parameterizations in the models. Finally, we show that skilful prediction of the QBO itself does not guarantee predictability of the extratropical winter teleconnection that is important for surface winter climate prediction.
Geophysical Research Letters | 2014
Leon Hermanson; Rosie Eade; N. H. Robinson; Nick Dunstone; Martin Andrews; Jeff R. Knight; Adam A. Scaife; Doug Smith
Decadal variability in the North Atlantic and its subpolar gyre (SPG) has been shown to be predictable in climate models initialized with the concurrent ocean state. Numerous impacts over ocean and land have also been identified. Here we use three versions of the Met Office Decadal Prediction System to provide a multimodel ensemble forecast of the SPG and related impacts. The recent cooling trend in the SPG is predicted to continue in the next 5 years due to a decrease in the SPG heat convergence related to a slowdown of the Atlantic Meridional Overturning Circulation. We present evidence that the ensemble forecast is able to skilfully predict these quantities over recent decades. We also investigate the ability of the forecast to predict impacts on surface temperature, pressure, precipitation, and Atlantic tropical storms and compare the forecast to recent boreal summer climate.
Environmental Research Letters | 2015
Martin Andrews; Jeff R. Knight; Lesley J. Gray
Numerous studies have suggested an impact of the 11 year solar cycle on the winter North Atlantic Oscillation (NAO), with an increased tendency for positive (negative) NAO signals to occur at maxima (minima) of the solar cycle. Climate models have successfully reproduced this solar cycle modulation of the NAO, although the magnitude of the effect is often considerably weaker than implied by observations. A leading candidate for the mechanism of solar influence is via the impact of ultraviolet radiation variability on heating rates in the tropical upper stratosphere, and consequently on the meridional temperature gradient and zonal winds. Model simulations show a zonal mean wind anomaly that migrates polewards and downwards through wave–mean flow interaction. On reaching the troposphere this produces a response similar to the winter NAO. Recent analyses of observations have shown that solar cycle–NAO link becomes clearer approximately three years after solar maximum and minimum. Previous modelling studies have been unable to reproduce a lagged response of the observed magnitude. In this study, the impact of solar cycle on the NAO is investigated using an atmosphere–ocean coupled climate model. Simulations that include climate forcings are performed over the period 1960–2009 for two solar forcing scenarios: constant solar irradiance, and time-varying solar irradiance. We show that the model produces significant NAO responses peaking several years after extrema of the solar cycle, persisting even when the solar forcing becomes neutral. This confirms suggestions of a further component to the solar influence on the NAO beyond direct atmospheric heating and its dynamical response. Analysis of simulated upper ocean temperature anomalies confirms that the North Atlantic Ocean provides the memory of the solar forcing required to produce the lagged NAO response. These results have implications for improving skill in decadal predictions of the European and North American winter climate.
Journal of Climate | 2014
Jeff R. Knight; Martin Andrews; Doug Smith; Alberto Arribas; Andrew W. Colman; Nick Dunstone; Rosie Eade; Leon Hermanson; Craig MacLachlan; K. Andrew Peterson; Adam A. Scaife; Andrew Williams
AbstractDecadal climate predictions are now established as a source of information on future climate alongside longer-term climate projections. This information has the potential to provide key evidence for decisions on climate change adaptation, especially at regional scales. Its importance implies that following the creation of an initial generation of decadal prediction systems, a process of continual development is needed to produce successive versions with better predictive skill. Here, a new version of the Met Office Hadley Centre Decadal Prediction System (DePreSys 2) is introduced, which builds upon the success of the original DePreSys. DePreSys 2 benefits from inclusion of a newer and more realistic climate model, the Hadley Centre Global Environmental Model version 3 (HadGEM3), but shares a very similar approach to initialization with its predecessor. By performing a large suite of reforecasts, it is shown that DePreSys 2 offers improved skill in predicting climate several years ahead. Differenc...
Climate Dynamics | 2017
Pablo Ortega; Jon Robson; Rowan Sutton; Martin Andrews
A necessary step before assessing the performance of decadal predictions is the evaluation of the processes that bring memory to the climate system, both in climate models and observations. These mechanisms are particularly relevant in the North Atlantic, where the ocean circulation, related to both the Subpolar Gyre and the Meridional Overturning Circulation (AMOC), is thought to be important for driving significant heat content anomalies. Recently, a rapid decline in observed densities in the deep Labrador Sea has pointed to an ongoing slowdown of the AMOC strength taking place since the mid 90s, a decline also hinted by in-situ observations from the RAPID array. This study explores the use of Labrador Sea densities as a precursor of the ocean circulation changes, by analysing a 300-year long simulation with the state-of-the-art coupled model HadGEM3-GC2. The major drivers of Labrador Sea density variability are investigated, and are characterised by three major contributions. First, the integrated effect of local surface heat fluxes, mainly driven by year-to-year changes in the North Atlantic Oscillation, which accounts for 62% of the total variance. Additionally, two multidecadal-to-centennial contributions from the Greenland–Scotland Ridge outflows are quantified; the first associated with freshwater exports via the East Greenland Current, and the second with density changes in the Denmark Strait Overflow. Finally, evidence is shown that decadal trends in Labrador Sea densities are followed by important atmospheric impacts. In particular, a positive winter NAO response appears to follow the negative Labrador Sea density trends, and provides a phase reversal mechanism.
Climate Dynamics | 2017
Nicolas Freychet; Aurelie Duchez; Chi-Hua Wu; Chao‐An Chen; Huang-Hsiung Hsu; Joël J.-M. Hirschi; Alexa Forryan; Bablu Sinha; Adrian L. New; Tim Graham; Martin Andrews; Chia-Ying Tu; Shian-Jiann Lin
This work investigates the variability of extreme weather events (drought spells, DS15, and daily heavy rainfall, PR99) over East Asia. It particularly focuses on the large scale atmospheric circulation associated with high levels of the occurrence of these extreme events. Two observational datasets (APHRODITE and PERSIANN) are compared with two high-resolution global climate models (HiRAM and HadGEM3-GC2) and an ensemble of other lower resolution climate models from CMIP5. We first evaluate the performance of the high resolution models. They both exhibit good skill in reproducing extreme events, especially when compared with CMIP5 results. Significant differences exist between the two observational datasets, highlighting the difficulty of having a clear estimate of extreme events. The link between the variability of the extremes and the large scale circulation is investigated, on monthly and interannual timescales, using composite and correlation analyses. Both extreme indices DS15 and PR99 are significantly linked to the low level wind intensity over East Asia, i.e. the monsoon circulation. It is also found that DS15 events are strongly linked to the surface temperature over the Siberian region and to the land-sea pressure contrast, while PR99 events are linked to the sea surface temperature anomalies over the West North Pacific. These results illustrate the importance of the monsoon circulation on extremes over East Asia. The dependencies on of the surface temperature over the continent and the sea surface temperature raise the question as to what extent they could affect the occurrence of extremes over tropical regions in future projections.
Advances in Atmospheric Sciences | 2018
Bo Lu; Hong-Li Ren; Rosie Eade; Martin Andrews
The sea surface temperature anomalies (SSTAs) in the tropical Indian Ocean (TIO) show two dominant modes at interannual time scales, referred to as the Indian Ocean basin mode (IOBM) and dipole mode (IOD). Recent studies have shown that the IOBM and IOD not only affect the local climate, but also induce remarkable influences in East Asia via teleconnections. In this study, we assess simulations of the IOBM and IOD, as well as their teleconnections, using the operational seasonal prediction models from the Met Office (HadGEM3) and Beijing Climate Center [BCC CSM1.1(m)]. It is demonstrated that the spatial patterns and seasonal cycles are generally reproduced by the control simulations of BCC CSM1.1(m) and HadGEM3, although spectra biases exist. The relationship between the TIO SSTA and El Niño is successfully simulated by both models, including the persistent IOBM warming following El Niño and the IOD–El Niño interactions. BCC CSM1.1(m) and HadGEM3 are capable of simulating the observed local impact of the IOBM, such as the strengthening of the South Asian high. The influences of the IOBM on Yangtze River rainfall are also captured well by both models, although this teleconnection is slightly weaker in BCC CSM1.1(m) due to the underestimation of the northwestern Pacific subtropical high. The local effect of the IOD on East African rainfall is reproduced by both models. However, the remote control of the IOD on rainfall over southwestern China is not clear in either model. It is shown that the realistic simulations of TIO SST modes and their teleconnections give rise to the source of skillful seasonal predictions over China.摘要年际尺度上印度洋海温变化主要呈现出两个主要模态: 洋盆一致模态(IOBM)以及偶极子模态(IOD). 最近的研究发现, IOBM和IOD模态不仅能带来印度洋局地的气候异常, 还能通过遥相关影响东亚气候. 本研究针对中国气象局和英国气象局的气候预测业务模式(分别为BCC_CSM1.1(m)和HadGEM3), 评估其对印度洋海温主模态及其遥相关特征的模拟能力. 评估结果显示, 两家模式能够把握住印度洋海温主要模态的基本特征(例如空间分布型、季节循环等), 然而一些模拟偏差(例如频谱等)依然存在. 观测中印度洋海温与El Niño的关系(例如El Niño衰弱期印度洋海温的增暖, 以及IOD-El Niño相互作用等)在两家模式中都有一定的体现. BCC_CSM1.1(m) 和HadGEM3都能模拟出IOBM的局地效应(例如南亚高压的增强), 同时长江流域夏季降水对IOBM的遥相关响应也在两家模式里有所反映, 受限于西北太平洋反气旋响应的偏弱, BCC_CSM1.1(m)中长江流域夏季降水的响应也略偏小. BCC_CSM1.1(m) 和HadGEM3能很好地重现IOD对环印度洋地区的气候影响, 然而观测中我国西南降水对IOD的响应在两家模式中均未有体现. 同时, 我们的研究也表明了印度洋海温及其遥相关影响的模拟水平对我国季节气候预测至关重要.
Nature Geoscience | 2016
Nick Dunstone; Doug Smith; Adam A. Scaife; Leon Hermanson; Rosie Eade; N. H. Robinson; Martin Andrews; Jeff R. Knight
Quarterly Journal of the Royal Meteorological Society | 2016
Lesley J. Gray; Tim Woollings; Martin Andrews; Jeff R. Knight
Environmental Research Letters | 2017
Jeff R. Knight; Anna Maidens; Peter A. G. Watson; Martin Andrews; Stephen Belcher; Gilbert Brunet; David Fereday; Chris K. Folland; Adam A. Scaife; Julia Slingo