Martin Hahmann
Dresden University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Hahmann.
edbt icdt workshops | 2012
Benjamin Gnauk; Lars Dannecker; Martin Hahmann
Modern demand-side management techniques are an integral part of the envisioned smart grid paradigm. They require an active involvement of the consumer for an optimization of the grids efficiency and a better utilization of renewable energy sources. This applies especially in so called demand dispatch systems, where consumers are required to proactively communicate their flexibilities. However, a monetary compensation may not sufficiently motivate the individual consumer for a sustainable participation in such a program. The proposed approach uses a motivational framework leveraging the novel area of gamification, which applies well-known game mechanics, such as points and leaderboards, to engage customers in the system. This is accomplished by embedding a special scoring system and social competition aspects into a stimulating user interface for the definition and management of flexible energy demand. In a first user study, the system showed a high user acceptance and the potential to engage consumers in participation.
international conference on data engineering | 2009
Peter Benjamin Volk; Frank Rosenthal; Martin Hahmann; Dirk Habich; Wolfgang Lehner
The topic of managing uncertain data has been explored in many ways. Different methodologies for data storage and query processing have been proposed. As the availability of management systems grows, the research on analytics of uncertain data is gaining in importance. Similar to the challenges faced in the field of data management, algorithms for uncertain data mining also have a high performance degradation compared to their certain algorithms. To overcome the problem of performance degradation, the MCDB approach was developed for uncertain data management based on the possible world scenario. As this methodology shows significant performance and scalability enhancement, we adopt this method for the field of mining on uncertain data. In this paper, we introduce a clustering methodology for uncertain data and illustrate current issues with this approach within the field of clustering uncertain data.
intelligent data analysis | 2009
Martin Hahmann; Peter Benjamin Volk; Frank Rosenthal; Dirk Habich; Wolfgang Lehner
One of the most important and challenging questions in the area of clustering is how to choose the best-fitting algorithm and parameterization to obtain an optimal clustering for the considered data. The clustering aggregation concept tries to bypass this problem by generating a set of separate, heterogeneous partitionings of the same data set, from which an aggregate clustering is derived. As of now, almost every existing aggregation approach combines given crisp clusterings on the basis of pair-wise similarities. In this paper, we regard an input set of soft clusterings and show that it contains additional information that is efficiently useable for the aggregation. Our approach introduces an expansion of mentioned pair-wise similarities, allowing control and adjustment of the aggregation process and its result. Our experiments show that our flexible approach offers adaptive results, improved identification of structures and high useability.
international conference on data mining | 2010
Martin Hahmann; Dirk Habich; Wolfgang Lehner
Data clustering is a highly used knowledge extraction technique and is applied in more and more application domains. Over the last years, a lot of algorithms have been proposed that are often complicated and/or tailored to specific scenarios. As a result, clustering has become a hardly accessible domain for non-expert users, who face major difficulties like algorithm selection and parameterization. To overcome this issue, we develop a novel feedback-driven clustering process using a new perspective of clustering. By substituting parameterization with user-friendly feedback and providing support for result interpretation, clustering becomes accessible and allows the step-by-step construction of a satisfying result through iterative refinement.
international database engineering and applications symposium | 2016
Kasun S. Perera; Martin Hahmann; Wolfgang Lehner; Torben Bach Pedersen; Christian Thomsen
The ongoing trend for data gathering not only produces larger volumes of data, but also increases the variety of recorded data types. Out of these, especially time series, e.g. various sensor readings, have attracted attention in the domains of business intelligence and decision making. As OLAP queries play a major role in these domains, it is desirable to also execute them on time series data. While this is not a problem on the conceptual level, it can become a bottleneck with regards to query run-time. In general, processing OLAP queries gets more computationally intensive as the volume of data grows. This is a particular problem when querying time series data, which generally contains multiple measures recorded at fine time granularities. Usually, this issue is addressed either by scaling up hardware or by employing workload based query optimization techniques. However, these solutions are either costly or require continuous maintenance. In this paper we propose an approach for approximate OLAP querying of time series that offers constant latency and is maintenance-free. To achieve this, we identify similarities between aggregation cuboids and propose algorithms that eliminate the redundancy these similarities present. In doing so, we can achieve compression rates of up to 80% while maintaining low average errors in the query results.
statistical and scientific database management | 2010
Martin Hahmann; Dirk Habich; Wolfgang Lehner
The continuing growth of data leads to major challenges for data clustering in scientific data management. Clustering algorithms must handle high data volumes/dimensionality, while users need assistance during their analyses. Ensemble clustering provides robust, high-quality results and eases the algorithm selection and parameterization. Drawbacks of available concepts are the lack of facilities for result adjustment and the missing support for result interpretation. To tackle these issues, we have already published an extended algorithm for ensemble clustering that uses soft clusterings. In this paper, we propose a novel visualization, tightly coupled to this algorithm, that provides assistance for result adjustments and allows the interpretation of clusterings for data sets of arbitrary size.
machine learning and data mining in pattern recognition | 2009
Frank Rosenthal; Peter Benjamin Volk; Martin Hahmann; Dirk Habich; Wolfgang Lehner
Regression models are often required for controlling production processes by predicting parameter values. However, the implicit assumption of standard regression techniques that the data set used for parameter estimation comes from a stationary joint distribution may not hold in this context because manufacturing processes are subject to physical changes like wear and aging, denoted as process drift . This can cause the estimated model to deviate significantly from the current state of the modeled system. In this paper, we discuss the problem of estimating regression models from drifting processes and we present ensemble regression , an approach that maintains a set of regression models--estimated from different ranges of the data set--according to their predictive performance. We extensively evaluate our approach on synthetic and real-world data.
statistical and scientific database management | 2017
Lars Kegel; Martin Hahmann; Wolfgang Lehner
Time series data has become a ubiquitous and important data source in many application domains. Most companies and organizations strongly rely on this data for critical tasks like decision-making, planning, predictions, and analytics in general. While all these tasks generally focus on actual data representing organization and business processes, it is also desirable to apply them to alternative scenarios in order to prepare for developments that diverge from expectations or assess the robustness of current strategies. When it comes to the construction of such what-if scenarios, existing tools either focus on scalar data or they address highly specific scenarios. In this work, we propose a generally applicable and easy-to-use method for the generation of what-if scenarios on time series data. Our approach extracts descriptive features of a data set and allows the construction of an alternate version by means of filtering and modification of these features.
database systems for advanced applications | 2015
Kasun S. Perera; Martin Hahmann; Wolfgang Lehner; Torben Bach Pedersen; Christian Thomsen
Evolving customer requirements and increasing competition force business organizations to store increasing amounts of data and query them for information at any given time. Due to the current growth of data volumes, timely extraction of relevant information becomes more and more difficult with traditional methods. In addition, contemporary Decision Support Systems (DSS) favor faster approximations over slower exact results. Generally speaking, processes that require exchange of data become inefficient when connection bandwidth does not increase as fast as the volume of data. In order to tackle these issues, compression techniques have been introduced in many areas of data processing. In this paper, we outline a new system that does not query complete datasets but instead utilizes models to extract the requested information. For time series data we use Fourier and Cosine transformations and piece-wise aggregation to derive the models. These models are initially created from the original data and are kept in the database along with it. Subsequent queries are answered using the stored models rather than scanning and processing the original datasets. In order to support model query processing, we maintain query statistics derived from experiments and when running the system. Our approach can also reduce communication load by exchanging models instead of data. To allow seamless integration of model-based querying into traditional data warehouses, we introduce a SQL compatible query terminology. Our experiments show that querying models is up to 80 % faster than querying over the raw data while retaining a high accuracy.
DARE'14 Proceedings of the Second International Conference on Data Analytics for Renewable Energy Integration | 2014
Robert Ulbricht; Martin Hahmann; Hilko Donker; Wolfgang Lehner
The capacity of renewable energy sources constantly increases world-wide and challenges the maintenance of the electric balance between power demand and supply. To allow for a better integration of solar energy supply into the power grids, a lot of research was dedicated to the development of precise forecasting approaches. However, there is still no straightforward and easy-to-use recommendation for a standardized forecasting strategy. In this paper, a classification of solar forecasting solutions proposed in the literature is provided for both weather- and energy forecast models. Subsequently, we describe our idea of a standardized forecasting process and the typical parameters possibly influencing the selection of a specific model. We discuss model combination as an optimization option and evaluate this approach comparing different statistical algorithms against flexible hybrid models in a case study.