Martin L. Biniossek
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin L. Biniossek.
Neuron | 2006
Uwe Schulte; Jörg-Oliver Thumfart; Nikolaj Klöcker; Claudia A. Sailer; Wolfgang Bildl; Martin L. Biniossek; Doris Dehn; Thomas Deller; Silke Eble; Karen Abbass; Tanja Wangler; Hans-Günther Knaus; Bernd Fakler
The voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.1-containing channels are complexed with Lgi1, the functionally unassigned product of the leucine-rich glioma inactivated gene 1 (LGI1), which is causative for an autosomal dominant form of lateral temporal lobe epilepsy (ADLTE). In the hippocampal formation, both Kv1.1 and Lgi1 are coassembled with Kv1.4 and Kvbeta1 in axonal terminals. In A-type channels composed of these subunits, Lgi1 selectively prevents N-type inactivation mediated by the Kvbeta1 subunit. In contrast, defective Lgi1 molecules identified in ADLTE patients fail to exert this effect resulting in channels with rapid inactivation kinetics. The results establish Lgi1 as a novel subunit of Kv1.1-associated protein complexes and suggest that changes in inactivation gating of presynaptic A-type channels may promote epileptic activity.
Journal of Proteome Research | 2011
Martin L. Biniossek; Dorit K. Nägler; Christoph Becker-Pauly; Oliver Schilling
Cysteine cathepsins mediate proteome homeostasis and have pivotal functions in diseases such as cancer. To better understand substrate recognition by cathepsins B, L, and S, we applied proteomic identification of protease cleavage sites (PICS) for simultaneous profiling of prime and non-prime specificity. PICS profiling of cathepsin B endopeptidase specificity highlights strong selectivity for glycine in P3 due to an occluding loop blocking access to the primed subsites. In P1, cathepsin B has a partial preference for phenylalanine, which is not found for cathepsins L and S. Occurrence of P1 phenylalanine often coincides with aromatic residues in P2. For cathepsin L, PICS identifies 845 cleavage sites, representing the most comprehensive PICS profile to date. Cathepsin L specificity is dominated by the canonical preference for aromatic residues in P2 with limited contribution of prime-site selectivity determinants. Profiling of cathepsins B and L with a shorter incubation time (4 h instead of 16 h) did not reveal time-dependency of individual specificity determinants. Cathepsin S specificity was profiled at pH 6.0 and 7.5. The PICS profiles at both pH values display a high degree of similarity. Cathepsin S specificity is primarily guided by aliphatic residues in P2 with limited importance of prime-site residues.
FEBS Journal | 2005
Costel C. Darie; Martin L. Biniossek; Veronika Winter; Bettina Mutschler; Wolfgang Haehnel
Complex I (NADH: ubiquinone oxidoreductase) is the first complex in the respiratory electron transport chain. Homologs of this complex exist in bacteria, mitochondria and chloroplasts. The minimal complex I from mitochondria and bacteria contains 14 different subunits grouped into three modules: membrane, connecting, and soluble subcomplexes. The complex I homolog (NADH dehydrogenase or Ndh complex) from chloroplasts from higher plants contains genes for two out of three modules: the membrane and connecting subcomplexes. However, there is not much information about the existence of the soluble subcomplex (which is the electron input device in bacterial complex I) in the composition of the Ndh complex. Furthermore, there are contrasting reports regarding the subunit composition of the Ndh complex and its molecular mass. By using blue native (BN)/PAGE and Tricine/PAGE or colorless‐native (CN)/PAGE, BN/PAGE and Tricine/PAGE, combined with mass spectrometry, we attempted to obtain more information about the plastidal Ndh complex from maize (Zea mays). Using antibodies, we detected the expression of a new ndh gene (ndhE) in mesophyll (MS) and bundle sheath (BS) chloroplasts and in ethioplasts (ET). We determined the molecular mass of the Ndh complex (550u2003kDa) and observed that it splits into a 300u2003kDa membrane subcomplex (containing NdhE) and a 250u2003kDa subcomplex (containing NdhH, ‐J and ‐K). The Ndh complex forms dimers at 1000–1100u2003kDa in both MS and BS chloroplasts. Native/PAGE of the MS and BS chloroplasts allowed us to determine that the Ndh complex contains at least 14 different subunits. The native gel electrophoresis, western blotting and mass spectrometry allowed us to identify five of the Ndh subunits. We also provide a method that allows the purification of large amounts of Ndh complex for further structural, as well as functional studies.
The FASEB Journal | 2006
Ivonne Petermann; Christian Mayer; Jörg Stypmann; Martin L. Biniossek; Desmond J. Tobin; Markus A. Engelen; Thomas Dandekar; Tilman Grune; Lorenz Schild; Christoph Peters; Thomas Reinheckel
Although lysosomal proteases are expressed in the heart at considerable levels, their specific functions in this organ remain elusive. Mice deficient for the lysosomal cysteine protease cathepsin L (CTSL) develop a late onset dilated cardiomyopathy (DCM) that is characterized by cardiac chamber dilation, fibrosis, and impaired cardiac contraction at 12 month of age. Investigation of the pathogenic sequence of DCM in ctsl−/− mice revealed numerous dysmor‐phic lysosome‐like structures in heart muscle as early as 3 days after birth, whereas skeletal muscle was not affected. Labeling of the acidic cell compartment of neonatal cardiomyocytes and detection of lysosomal markers after subcellular fractionation confirmed increased lysosome content in CTSL deficient myocar‐dium; however, specific storage materials were not detected. The myocardium of ctsl+/+ and ctsl−/− mice revealed no differences in incidence of cell death, proliferation, and capillary density during DCM progression. However, an observed increase in mRNA expression of natriuretic peptides in young adult mice indicates the activation of the adaptive “fetal” gene program, while proteome analysis revealed decreased levels of the sarcomere‐associated proteins α‐tropomy‐osin, desmin, and calsarcin 1, as well as considerable changes of metabolic enzymes. Bioinformatic pathway analysis suggested a switch to anaerobic catabolism and impairment of mitochondrial respiration. This interpretation was supported by a 50% reduction in resting state oxygen consumption and impaired respiration capacity in ctsl−/− myocardial homogenates. In summary, the data indicate an essential role of CTSL in maintaining the structure of the endosomal/lysosomal compartment in cardiomyocytes. Lysosomal impairment in ctsl−/− hearts results in metabolic and sarcomeric alterations that promote DCM development.—Petermann, I., Mayer, C., Stypmann, J., Biniossek, M. L., Tobin, D. J., Engelen, M. A., Dandekar, T., Grune, T., Schild, L., Peters, C., Reinheckel, T. Lysosomal, cytoskeletal, and metabolic alterations in cardiomyopa‐thy of cathepsin L knockout mice. FASEB J. 20, E587‐E598 (2006)
Journal of Biological Chemistry | 2005
Costel C. Darie; Martin L. Biniossek; Mary Ann Gawinowicz; Yelena Milgrom; Joerg O. Thumfart; Luca Jovine; Eveline S. Litscher; Paul M. Wassarman
The rainbow trout egg vitelline envelope (VE) is constructed of three proteins, called VEα,VEβ, and VEγ, that are synthesized and secreted by the liver and transported in the bloodstream to the ovary, the site of VE assembly around eggs. All three proteins possess an N-terminal signal peptide, a zona pellucida domain, a consensus furin-like cleavage site (CFLCS) close to the C terminus, and a short propeptide downstream of the CFLCS. Proteolytic processing at the CFLCS results in loss of the short C-terminal propeptide from precursor proteins and enables incorporation of mature proteins into the VE. Here mass spectrometry (matrix-assisted laser desorption ionization time-of-flight-mass spectrometry and liquid chromatography-mass spectrometry with a micromass-quadrupole TOF hybrid mass and a QSTAR Pulsar i mass spectrometer) was employed with VE proteins isolated from rainbow trout eggs in a peptidomics-based approach to determine the following: 1) the C-terminal amino acid of mature, proteolytically processed VE proteins; 2) the cellular site of proteolytic processing at the CFLCS of VE precursor proteins; and 3) the relationship between proteolytic processing and limited covalent cross-linking of VE proteins. Peptides derived from the C-terminal region were found for all three VE proteins isolated from eggs, indicating that processing at the CFLCS occurs after the arrival of VE precursor proteins at the egg. Consistent with this conclusion, peptides containing an intact CFLCS were also found for all three VE proteins isolated from eggs. Furthermore, peptides derived from the C-terminal propeptides of VE protein heterodimers VEα-VEγ and VEβ-VEγ were found, suggesting that a small amount of VE protein can be covalently cross-linked on eggs prior to proteolytic processing at the CFLCS. Collectively, these results provide important evidence about the process of VE formation in rainbow trout and other non-cyprinoid fish and allow comparisons to be made with the process of zona pellucida formation in mammals.
Bioconjugate Chemistry | 2008
Claudia Ryppa; Hagit Mann-Steinberg; Iduna Fichtner; Holger Weber; Ronit Satchi-Fainaro; Martin L. Biniossek; Felix Kratz
Integrins, especially integrin alpha vbeta3, are attractive receptors for vascular targeting strategies. Recently, a divalent RGD peptidomimetic, E-[c(RGDfK)2], has been described that demonstrates increased uptake in human ovarian carcinoma OVCAR-3 xenograft tumors. Inspired by these results, we set out to develop doxorubicin conjugates with E-[c(RGDfK)2] by binding two different maleimide derivatives of doxorubicin to E-[c(RGDfK)2] that was thiolated with iminothiolane. In this way, two water-soluble derivatives were obtained, E-[c(RGDfK)2]-DOXO-1 and E-[c(RGDfK)2]-DOXO-2. In E-[c(RGDfK)2]-DOXO-1, doxorubicin was bound to the peptide through a stable amide bond, and in E-[c(RGDfK)2]-DOXO-2, a MMP-2/MMP-9 cleavable octapeptide was introduced between doxorubicin and the peptide. The rationale for a MMP-2/MMP-9-cleavable linker was that MMP-2 and MMP-9 bind to integrin alpha vbeta3 and both are overexpressed in tumor vasculature. In addition, analogous control doxorubicin-containing peptides bearing c(RADfK) that does not bind to integrin alpha vbeta3 were synthesized, i.e., c(RADfK)-DOXO-1 and c(RADfK)-DOXO-2. Whereas E-[c(RGDfK) 2]-DOXO-2 was cleaved effectively by MMP-2 and in OVCAR-3 tumor homogenates releasing a doxorubicin-tetrapeptide or doxorubicin as the final cleavage product, no release of doxorubicin was observed for E-[c(RGDfK)2]-DOXO-1. Proliferation of HUVEC in the presence of MMP-2-cleavable doxorubicin-containing peptides exhibited 6- to 10-fold increased inhibition compared to the amide-linked doxorubicin-containing peptides. In addition, inhibition of HUVEC sprouting during a 24 h exposure was approximately 3-fold stronger for E-[c(RGDfK) 2]-DOXO-2 and 20-fold stronger for the reference peptide conjugate c(RADfK)-DOXO-2 than for doxorubicin alone. In vivo studies in an OVCAR-3 xenograft model demonstrated no or only moderate antitumor efficacy for either E-[c(RGDfK)2], E-[c(RGDfK)2]-DOXO-1, E-[c(RGDfK)2]-DOXO-2, or c(RADfK)-DOXO-2, even at doses of 3 x 24 mg/kg doxorubicin equivalents, compared to an improved antitumor effect for doxorubicin at 2 x 8 mg/kg.
International Journal of Pharmaceutics | 2009
Claudia Ryppa; Hagit Mann-Steinberg; Martin L. Biniossek; Ronit Satchi-Fainaro; Felix Kratz
The alpha(v)beta(3) integrin is overexpressed on proliferating endothelial cells such as those present in growing tumors as well as on tumor cells of various origins. Tumor-induced angiogenesis can be inhibited in vivo by antagonizing the alpha(v)beta(3) integrin with small peptides containing the arginyl-glycyl-aspartic acid (RGD) amino acid sequence. The divalent cyclic peptide E-[c(RGDfK)(2)] is a novel ligand-based vascular-targeting agent that binds integrin alpha(v)beta(3) and demonstrated high uptake in OVCAR-3 xenograft tumors. In this work, we coupled the 2-OH-group of paclitaxel through an aliphatic ester to the amino group of E-[c(RGDfK)(2)] or the control peptide c(RADfK), thus obtaining the derivatives E-[c(RGDfK)(2)]-paclitaxel and c(RADfK)-paclitaxel. Subsequently, we investigated the activity of the paclitaxel derivatives using several well-established in vitro angiogenesis assays: using a standard 72 h endothelial cell proliferation assay, we showed that both E-[c(RGDfK)(2)]-paclitaxel and c(RADfK)-paclitaxel inhibit the proliferation of human umbilical vein endothelial cells (HUVEC) in a similar manner as free paclitaxel (IC(50) value approximately 0.4 nM), an observation that can be explained by the half-life of the paclitaxel ester bond in the conjugates of approximately 2h at pH 7. In contrast, a 30-min exposure of the cells to the three drugs showed a clear difference between free paclitaxel, E-[c(RGDfK)(2)]-paclitaxel and c(RADfK)-paclitaxel with IC(50) values of 10nM, 25 nM, and 60 nM, respectively. These differences are very likely due to the different routes of cellular entry of these three molecules. While the hydrophobic paclitaxel diffuses rapidly through the cell membrane, the charged peptide-containing derivative E-[c(RGDfK)(2)]-paclitaxel binds to the overexpressed alpha(v)beta(3) integrin in order to enter the cells via receptor-mediated endocytosis. The differences between the derivatives were further demonstrated using an endothelial cell adhesion assay. Inhibition of cell attachment was observed only with the E-[c(RGDfK)(2)]-paclitaxel derivative indicating its specificity to the growing endothelial cells. Furthermore, E-[c(RGDfK)(2)]-paclitaxel inhibited both endothelial cells migration and capillary-like tube formation. These results further demonstrate their antiangiogenic properties. In vivo studies in an OVCAR-3 xenograft model demonstrated no antitumor efficacy for either E-[c(RGDfK)(2)] or E-[c(RGDfK)(2)]-paclitaxel compared to moderate efficacy for paclitaxel.
Journal of Hepatology | 2013
Daniela Ploen; Mohamed Lamine Hafirassou; Kiyoshi Himmelsbach; Daniel Sauter; Martin L. Biniossek; Thomas Weiss; Thomas F. Baumert; Catherine Schuster; Eberhard Hildt
BACKGROUND & AIMSnHepatitis C virus (HCV) replication/morphogenesis takes place at the membranous web. Viral genome replication occurs in replicon complexes on the cytoplasmic face of the ER whereas HCV assembly is located on the surface of lipid droplets (LDs). This raises the question about targeting of de novo synthesized viral genomes from the replicon complex to LDs and cellular proteins involved in this process such as the LD-associated protein TIP47, also known as cytoplasmic sorting factor.nnnMETHODSnViral replication was studied in HuH7.5 cells using the infectious HCV JHF1 culture system. Proteome analysis was performed by 2D gel electrophoresis and mass spectrometry. Expression of target genes was modulated by siRNA or lentiviral transduction. Confocal microscopy was performed for analysis of subcellular compartments. Protein/protein interactions were studied by co-immunoprecipitations, affinity chromatography, and yeast two-hybrid screens.nnnRESULTSnProteome based analysis revealed that HCV replicating cells contain less TIP47 compared to control cells. However, expression analyses demonstrated an increased TIP47 expression in HCV replicating cells. TIP47 binds to RNA-loaded NS5A. Mapping of the binding domain revealed that NS5A binds to the N-terminal PAT domain of TIP47. Overexpression of TIP47 increases the amount of released viruses, while silencing of TIP47 decreases the amount of released infectious particles. Complete knockdown of TIP47 expression abolishes virus replication.nnnCONCLUSIONSnTIP47 plays an essential role in the HCV life cycle.
Bioconjugate Chemistry | 2009
Khalid Abu Ajaj; Martin L. Biniossek; Felix Kratz
The aim of this work was to develop a new bifunctional maleimide linker for the development of dual-acting prodrugs that incorporate two pharmaceutically different anticancer agents independently bound by enzymatically cleavable substrates. The linker consists of a carboxyl group in one arm and an activated 1,6-self-immolative para-aminobenzyloxycarbonyl spacer together with a cathepsin B cleavable dipeptide Phe-Lys in the other. Aided with this linker, we have prepared a thiol-binding prodrug that contains the anticancer drugs doxorubicin and paclitaxel. Bound to the cysteine-34 position of albumin, it was cleaved efficiently by cathepsin B releasing the free drugs.
Molecular Oncology | 2014
Hasmik Shahinian; Daniela Loessner; Martin L. Biniossek; Jayachandran N. Kizhakkedathu; Judith A. Clements; Viktor Magdolen; Oliver Schilling
Kallikrein‐related peptidases, in particular KLK4, 5, 6 and 7 (4–7), often have elevated expression levels in ovarian cancer. In OV‐MZ‐6 ovarian cancer cells, combined expression of KLK4–7 reduces cell adhesion and increases cell invasion and resistance to paclitaxel. The present work investigates how KLK4–7 shape the secreted proteome (“secretome”) and proteolytic profile (“degradome”) of ovarian cancer cells. The secretome comparison consistently identified >900 proteins in three replicate analyses. Expression of KLK4–7 predominantly affected the abundance of proteins involved in cell–cell communication. Among others, this includes increased levels of transforming growth factor β‐1 (TGFβ‐1). KLK4–7 co‐transfected OV‐MZ‐6 cells share prominent features of elevated TGFβ‐1 signaling, including increased abundance of neural cell adhesion molecule L1 (L1CAM). Augmented levels of TGFβ‐1 and L1CAM upon expression of KLK4–7 were corroborated in vivo by an ovarian cancer xenograft model. The degradomic analysis showed that KLK4–7 expression mostly affected cleavage sites C‐terminal to arginine, corresponding to the preference of kallikreins 4, 5 and 6. Putative kallikrein substrates include chemokines, such as growth differentiation factor 15 (GDF 15) and macrophage migration inhibitory factor (MIF). Proteolytic maturation of TGFβ‐1 was also elevated. KLK4–7 have a pronounced, yet non‐degrading impact on the secreted proteome, with a strong association between these proteases and TGFβ‐1 signaling in tumor biology.