Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin R. Stämpfli is active.

Publication


Featured researches published by Martin R. Stämpfli.


Nature Reviews Immunology | 2009

How cigarette smoke skews immune responses to promote infection, lung disease and cancer

Martin R. Stämpfli; Gary P. Anderson

A complex and multilayered immune defence system protects the host against harmful agents and maintains tissue homeostasis. Cigarette smoke ex posure markedly impacts the immune system, compromising the hosts ability to mount appropriate immune and inflammatory responses and contributing to smoking-related pathologies. These adverse effects on the immune system not only occur in active smokers, but also in those exposed to smoke passively in contaminated environments, and may persist for decades after exposure has ended.


Journal of Immunology | 2004

Smad3 Null Mice Develop Airspace Enlargement and Are Resistant to TGF-β-Mediated Pulmonary Fibrosis

Philippe Bonniaud; Martin Kolb; Tom Galt; Jennifer Robertson; Clinton S. Robbins; Martin R. Stämpfli; Carol Lavery; Peter J. Margetts; Anita B. Roberts; Jack Gauldie

Transforming growth factor-β1 plays a key role in the pathogenesis of pulmonary fibrosis, mediating extracellular matrix (ECM) gene expression through a series of intracellular signaling molecules, including Smad2 and Smad3. We show that Smad3 null mice (knockout (KO)) develop progressive age-related increases in the size of alveolar spaces, associated with high spontaneous presence of matrix metalloproteinases (MMP-9 and MMP-12) in the lung. Moreover, transient overexpression of active TGF-β1 in lungs, using adenoviral vector-mediated gene transfer, resulted in progressive pulmonary fibrosis in wild-type mice, whereas no fibrosis was seen in the lungs of Smad3 KO mice up to 28 days. Significantly higher levels of matrix components (procollagen 3A1, connective tissue growth factor) and antiproteinases (plasminogen activator inhibitor-1, tissue inhibitor of metalloproteinase-1) were detected in wild-type lungs 4 days after TGF-β1 administration, while no such changes were seen in KO lungs. These data suggest a pivotal role of the Smad3 pathway in ECM metabolism. Basal activity of the pathway is required to maintain alveolar integrity and ECM homeostasis, but excessive signaling through the pathway results in fibrosis characterized by inhibited degradation and enhanced ECM deposition. The Smad3 pathway is involved in pathogenic mechanisms mediating tissue destruction (lack of repair) and fibrogenesis (excessive repair).


Journal of Clinical Investigation | 1998

GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice.

Martin R. Stämpfli; Ryan E. Wiley; G. S. Neigh; Beata U. Gajewska; Xue-Feng Lei; Denis P. Snider; Zhou Xing; Manel Jordana

The purpose of this study was to explore whether repeated exposure to aerosolized ovalbumin (OVA) in the context of local expression of GM-CSF can initiate a Th2-driven, eosinophilic inflammation in the airways. On day -1, Balb/c mice were infected intranasally with an adenovirus construct expressing GM-CSF (Ad/GM-CSF). From day 0 to day 9 mice were exposed daily to an OVA aerosol. Mice exposed to OVA alone did not show any evidence of airway inflammation. Mice receiving both Ad/GM-CSF and aerosolized OVA exhibited marked airway inflammation characterized by eosinophilia and goblet cell hyperplasia. Migration of eosinophils into the airway was preceded by a rise in IL-5 and IL-4. Both IL-5 and class II MHC were critically required to generate airway eosinophilia. After resolution, airway eosinophilia was reconstituted after a single OVA exposure. Flow cytometric analysis of dispersed lung cells revealed an increase in macrophages and dendritic cells expressing B7.1 and B7.2, and expansion of activated (CD69-expressing) CD4 and CD8 T cells in mice exposed to OVA and Ad/GM-CSF. Our data indicate that expression of GM-CSF in the airway compartment increases local antigen presentation capacity, and concomitantly facilitates the development of an antigen-specific, eosinophilic inflammatory response to an otherwise innocuous antigen.


Journal of Immunology | 2002

Chronic Exposure to Innocuous Antigen in Sensitized Mice Leads to Suppressed Airway Eosinophilia That Is Reversed by Granulocyte Macrophage Colony-Stimulating Factor

Filip K. Swirski; Dusan Sajic; Clinton S. Robbins; Beata U. Gajewska; Manel Jordana; Martin R. Stämpfli

In this study we investigated the impact of chronic allergen exposure on airway inflammation and humoral responses in sensitized mice. We observed marked eosinophilia in the bronchoalveolar lavage, lung tissue, and peripheral blood after 2 wk of exposure. In contrast, eosinophilia was markedly reduced by 3 wk and completely resolved by 4 wk of exposure, despite the continued presence of Ag. Decreases in airway eosinophilia were associated with a robust humoral response. We observed that levels of OVA-specific IgE, IgG1, and IgG2a increased during the course of exposure. To assess whether continuous exposure to Ag impacts the ability of the lung to respond to subsequent Ag challenge, mice were exposed to either 2 or 4 wk of OVA in the context of GM-CSF. All groups were then rested for 28 days and exposed to OVA on three consecutive days. We observed a significant decrease in airway eosinophilia and IL-5 expression in the bronchoalveolar lavage and serum in mice initially exposed to 4 wk of OVA, compared with animals exposed to 2 wk only. However, in both groups expression of B7.2 on dendritic cells as well as CD25, CD69, and T1/ST2 on CD4+ T cells was enhanced, suggesting immune activation. Delivery of rGM-CSF fully restored airway eosinophilia. This study shows that exposure to innocuous Ag alone does not lead to persistent eosinophilic airway inflammation, but rather to abrogated eosinophilia. This suppression can be reversed by GM-CSF.


PLOS ONE | 2011

IL-1α/IL-1R1 Expression in Chronic Obstructive Pulmonary Disease and Mechanistic Relevance to Smoke-Induced Neutrophilia in Mice

Fernando Botelho; Carla M. T. Bauer; Donna K. Finch; Jake K. Nikota; Caleb C. J. Zavitz; Ashling Kelly; Kristen N. Lambert; Sian Piper; Martyn L. Foster; James J.P. Goldring; Jadwiga A. Wedzicha; Jennifer Bassett; Jonathan Bramson; Yoichiro Iwakura; Matthew A. Sleeman; Roland Kolbeck; Anthony J. Coyle; Alison A. Humbles; Martin R. Stämpfli

Background Cigarette smoking is the main risk factor for the development of chronic obstructive pulmonary disease (COPD), a major cause of morbidity and mortality worldwide. Despite this, the cellular and molecular mechanisms that contribute to COPD pathogenesis are still poorly understood. Methodology and Principal Findings The objective of this study was to assess IL-1 α and β expression in COPD patients and to investigate their respective roles in perpetuating cigarette smoke-induced inflammation. Functional studies were pursued in smoke-exposed mice using gene-deficient animals, as well as blocking antibodies for IL-1α and β. Here, we demonstrate an underappreciated role for IL-1α expression in COPD. While a strong correlation existed between IL-1α and β levels in patients during stable disease and periods of exacerbation, neutrophilic inflammation was shown to be IL-1α-dependent, and IL-1β- and caspase-1-independent in a murine model of cigarette smoke exposure. As IL-1α was predominantly expressed by hematopoietic cells in COPD patients and in mice exposed to cigarette smoke, studies pursued in bone marrow chimeric mice demonstrated that the crosstalk between IL-1α+ hematopoietic cells and the IL-1R1+ epithelial cells regulates smoke-induced inflammation. IL-1α/IL-1R1-dependent activation of the airway epithelium also led to exacerbated inflammatory responses in H1N1 influenza virus infected smoke-exposed mice, a previously reported model of COPD exacerbation. Conclusions and Significance This study provides compelling evidence that IL-1α is central to the initiation of smoke-induced neutrophilic inflammation and suggests that IL-1α/IL-1R1 targeted therapies may be relevant for limiting inflammation and exacerbations in COPD.


Cancer Research | 2007

Mainstream Tobacco Smoke Causes Paternal Germ-Line DNA Mutation

Carole L. Yauk; M. Lynn Berndt; Andrew Williams; Andrea Rowan-Carroll; George R. Douglas; Martin R. Stämpfli

Despite the presence of known mutagens and carcinogens in cigarette smoke, there is currently no evidence to show that smoking, or exposure to cigarette smoke, can result in heritable genetic mutation. We show that male mice exposed to mainstream tobacco smoke (MTS) exhibit a significant increase in germ-line mutation frequency in spermatogonial stem cells. We exposed mature male mice to MTS for 6 or 12 weeks and investigated mutations arising in exposed spermatogonial stem cells at the expanded simple tandem repeat locus Ms6-hm. A generalized score test showed a significant treatment effect (P = 0.0214). Ms6-hm mutation frequency was 1.4 and 1.7 times higher in mice exposed to MTS for 6 and 12 weeks, respectively, compared with sham controls. The data suggest that mutations accumulate in the spermatogonial stem cells with extended exposures. Mutation spectra were identical between exposed and sham individuals, supporting the hypothesis that tandem repeat mutations arise through indirect mechanisms of mutation. Mutations in sperm that are passed on to offspring cause permanent, irreversible changes in genetic composition and can persist in future generations. Our research suggests that the consequences of smoking extend beyond the smoker to their nonsmoking descendents.


American Journal of Respiratory and Critical Care Medicine | 2009

Bacteria challenge in smoke-exposed mice exacerbates inflammation and skews the inflammatory profile.

Gordon J. Gaschler; Marko Skrtic; Caleb C. J. Zavitz; Maria Lindahl; Per-Ola Onnervik; Timothy F. Murphy; Sanjay Sethi; Martin R. Stämpfli

RATIONALE The pathogenesis of chronic obstructive pulmonary disease is associated with acute episodes of bacterial exacerbations. The most commonly isolated bacteria during episodes of exacerbation is nontypeable Haemophilus influenzae (NTHI). OBJECTIVES In this study, we investigated the in vivo consequences of cigarette smoke exposure on the inflammatory response to an NTHI challenge. METHODS C57BL/6 and BALB/c mice were exposed to cigarette smoke for 8 weeks and subsequently challenged intranasally with NTHI. MEASUREMENTS AND MAIN RESULTS We observed increased pulmonary inflammation and lung damage in cigarette smoke-exposed NTHI-challenged mice as compared with control NTHI-challenged mice. Furthermore, although NTHI challenge in control mice was marked by increases in tumor necrosis factor-alpha, IL-6, MIP-2, and KC/GROalpha, NTHI challenge in cigarette smoke-exposed mice led to a prominent up-regulation of a different subset of inflammatory mediators, most notably MCP-1, -3, and -5, IP-10, and MIP-1gamma. This skewed inflammatory mediator expression was also observed after ex vivo NTHI stimulation of alveolar macrophages, signifying their importance to this altered response. Importantly, corticosteroids attenuated inflammation after NTHI challenge in both cigarette smoke-exposed and control mice; however, this was associated with significantly increased bacterial burden. CONCLUSIONS Collectively, these data suggest that cigarette smoke exacerbates the inflammatory response to a bacterial challenge via skewed inflammatory mediator expression.


American Journal of Respiratory Cell and Molecular Biology | 2010

Innate immune processes are sufficient for driving cigarette smoke-induced inflammation in mice.

Fernando Botelho; Gordon J. Gaschler; Sussan Kianpour; Cale C. J. Zavitz; Nancy J. Trimble; Jake K. Nikota; Carla M. T. Bauer; Martin R. Stämpfli

The objective of this study was to characterize the impact of cigarette smoke exposure on lung immune and inflammatory processes. BALB/c and C57BL/6 mice were exposed to cigarette smoke for 4 days (acute) or at least 5 weeks (prolonged). Both mouse strains manifested an inflammatory response after acute smoke exposure, characterized by an influx of neutrophils and mononuclear cells. Multiplex analysis revealed a greater than twofold increase of the cytokines IL-1alpha, -5, -6, and -18, as well as the chemokines monocyte chemotactic protein-1 and -3, macrophage inflammatory protein-1alpha, -beta, and -gamma, -2, -3beta, macrophage defined chemokine, granulocyte chemotactic protein-2, and interferon-gamma-inducible protein-10. In BALB/c mice, neutrophilia persisted after prolonged exposure, whereas C57BL/6 showed evidence of attenuated neutrophilia both in the bronchoalveolar lavage and the lungs. In both mouse strains, cigarette smoke exposure was associated with an expansion of mature (CD11c(hi)/major histocompatibility complex class II(hi)) myeloid dendritic cells; we observed no changes in plasmacytoid dendritic cells. Lymphocytes in the lungs displayed an activated phenotype that persisted for CD4 T cells only after prolonged exposure. In BALB/c mice, T cells acquired T helper (Th) 1 and Th2 effector function after 5 weeks of smoke exposure, whereas, in C57BL/6 mice, neither Th1 nor Th2 cells were detected. In both mouse strains, cigarette smoke exposure led to an accumulation of FoxP3+ T regulatory cells in the lungs. Studies in RAG1 knockout mice suggest that these regulatory cells may participate in controlling smoke-induced inflammation. Acute and prolonged cigarette smoke exposure was associated with inflammation, activation of the adaptive immune system, and expansion of T regulatory cells in the lungs.


Journal of Leukocyte Biology | 2008

Impairment of human NK cell cytotoxic activity and cytokine release by cigarette smoke

M. Firoz Mian; Nicole M. Lauzon; Martin R. Stämpfli; Karen L. Mossman; Ali A. Ashkar

NK cells play essential roles in innate host defense against microbial infections and tumor surveillance. Although evidence suggests that smoking has adverse effects on the immune system, little is known about whether smoking compromises NK cell effector functions. In this study, we show that cigarette smoke‐conditioned medium (SCM) dose‐dependently inhibits in vitro IFN‐γ production by polyinosinic:polycytidylic acid (poly I:C)‐activated PBMC and NK cells isolated from nonsmoking individuals. Similarly, SCM attenuated poly I:C‐induced TNF‐α production by PBMC and NK cells. The inhibitory effect of cigarette smoke on TNF‐α production was reversible. PBMC and NK cells isolated from smokers displayed significant reduction of IFN‐γ and TNF‐α secretions compared with nonsmokers in response to poly I:C activation. We further observed that SCM attenuated NK cell cytotoxic activity, which was associated with decreased up‐regulation of perforin expression. Attenuated cytotoxic activity was also observed in PBMCs isolated from smokers. Finally, anti‐IL‐12 mAb‐blocking data revealed that an attenuation of IFN‐γ production by PBMC was indirect, likely via attenuation of IL‐12 production, and the effect on NK cells was IL‐12‐independent. Our data indicate that cigarette smoke compromises function of human NK cells. This may contribute to a higher incidence of viral infections and cancer among smokers.


Journal of Clinical Investigation | 1998

Disruption of antigen-induced inflammatory responses in CD40 ligand knockout mice.

Xue-Feng Lei; Yuichi Ohkawara; Martin R. Stämpfli; Claudio Mastruzzo; Robert A. Marr; Denis P. Snider; Zhou Xing; Manel Jordana

The objective of this study was to investigate the contribution of the interaction between CD40 and its ligand (CD40L) to antigen-induced airways inflammatory responses. To this end, we used a model involving ovalbumin (OVA) sensitization followed by OVA aerosol challenge in CD40L knockout (KO) mice. OVA-specific IgE and IgG1 were detected in the serum of the sensitized control, but not in CD40L-KO mice. After antigen challenge, sensitized control mice developed airway inflammation that was primarily eosinophilic. This inflammatory response was dramatically reduced in CD40L-KO mice. In contrast, similar numbers of eosinophils were observed in both the bone marrow and the peripheral blood in the sensitized controls and mutant strains after antigen challenge. To investigate the mechanisms underlying these findings, we examined levels of the cytokines IL-5, IL-4, and TNFalpha in both bronchoalveolar lavage (BAL) and serum. Similar levels of IL-5 were detected in BAL and serum of control and CD40L-KO mice; however, negligible levels of IL-4 in BAL and serum and of TNFalpha in BAL were detected in CD40L-KO mice when compared with control mice. Furthermore, we demonstrated that endothelial cell expression of vascular cell adhesion molecule 1 in OVA-sensitized and -challenged CD40L-KO mice was, as detected by immunohistochemistry, markedly decreased compared with that observed in similarly treated control mice. In addition, we locally overexpressed IL-4 and TNFalpha by using an adenoviral (Ad)-mediated gene transfer approach. Intranasal administration of either Ad/TNFalpha or Ad/IL-4 into OVA-sensitized and -challenged CD40L-KO mice did not reconstitute airway eosinophilia. However, concurrent administration of Ad/TNFalpha and Ad/IL-4 upregulated endothelial expression of vascular cell adhesion molecule 1, and resulted in full reconstitution of the inflammatory response in the airways. Together, these findings demonstrate the importance of the CD40-CD40L costimulatory pathway in the full expression of the inflammatory response in the airways.

Collaboration


Dive into the Martin R. Stämpfli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge