Mathieu C. Morissette
McMaster University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mathieu C. Morissette.
American Journal of Respiratory and Critical Care Medicine | 2008
Mathieu C. Morissette; Guillaume Vachon-Beaudoin; Julie Parent; Jamila Chakir; Julie Milot
RATIONALE Emphysema is mainly known for the complex inflammatory processes associated with its development. In addition to lung inflammation, it is now accepted that increased alveolar cell apoptosis is also part of emphysema pathophysiology. However, little is known about the mechanisms involved in alveolar apoptosis. We postulate that oxidative stress and proinflammatory cytokines could lead to p53 accumulation, Bax/Bcl-x(L) ratio elevation, and higher tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor levels in the emphysematous lung. OBJECTIVES To evaluate the expression of p53, Bax, Bcl-x(L), TRAIL, and TRAIL receptors in lung parenchyma from nonemphysematous nonsmokers and smokers and emphysematous smokers and ex-smokers and to determine whether H2O2 and/or TNF can modulate the expression of these apoptotic proteins. METHODS p53, Bax, Bcl-x(L), and TRAIL receptor protein levels in lung parenchyma were measured by Western blot, and TRAIL mRNA levels were measured by real-time polymerase chain reaction. Changes in TRAIL receptor, Bax, Bcl-x(L), and p53 protein levels after in vitro H2O2 and/or TNF stimulation of A549 cells were also assessed by Western blot. MEASUREMENTS AND MAIN RESULTS The p53 protein levels, the Bax/Bcl-x(L) ratio, and TRAIL receptors 1, 2, and 3 protein levels were significantly higher in subjects with emphysema. Moreover, they were also increased after H2O2 and TNF treatments of A549 cells. CONCLUSIONS These findings suggest that oxidative stress and proinflammatory cytokines may be involved in the elevation of p53 levels, the Bax/Bcl-x(L) ratio, and TRAIL receptor levels, new mechanisms that may be implicated in the increased alveolar cell apoptosis that occurs in emphysema.
International Journal of Chronic Obstructive Pulmonary Disease | 2008
Mathieu C. Morissette; Julie Parent; Julie Milot
Emphysema is mainly caused by cigarette smoking and is characterized by the loss of alveolar integrity and an enlargement of the alveolar space. However, mechanisms involved in its development are not fully understood. Alveolar cell apoptosis has been previously investigated in the lung of emphysematous subjects as a potential contributor to the loss of alveolar cell and has been found abnormally elevated. Though, mechanisms involved in the increased alveolar apoptosis that occurs in emphysema have now become a prolific field of research. Those mechanisms are reviewed here with special focus on how they affect cell viability and how they may be implicated in emphysema. Moreover, we suggest a model that integrates all those mechanisms to explain the increased alveolar apoptosis observed in emphysema. This review also includes some reflections and suggestions on the research to come.
Thorax | 2012
Jonathan Grigg; Haydn Walters; Sukhwinder Singh Sohal; R Wood-Baker; Dw Reid; Cang-Bao Xu; Lars Edvinsson; Mathieu C. Morissette; Martin R. Stämpfli; Michael Kirwan; Lee Koh; Reetika Suri; Naseem Mushtaq
Background Exposure to cigarette smoke (CS) is associated with increased risk of pneumococcal infection. The mechanism for this association is unknown. We recently reported that the particulate matter from urban air simulates platelet-activating factor receptor (PAFR)-dependent adhesion of pneumococci to airway cells. We therefore sought to determine whether CS stimulates pneumococcal adhesion to airway cells. Methods Human alveolar (A549), bronchial (BEAS2-B), and primary bronchial epithelial cells (HBEpC) were exposed to CS extract (CSE), and adhesion of Streptococcus pneumoniae determined. The role of PAFR in mediating adhesion was determined using a blocker (CV-3988). PAFR transcript level was assessed by quantitative real-time PCR, and PAFR expression by flow cytometry. Lung PAFR transcript level was assessed in mice exposed to CS, and bronchial epithelial PAFR expression assessed in active-smokers by immunostaining. Results In A549 cells, CSE 1% increased pneumococcal adhesion (p<0.05 vs control), PAFR transcript level (p<0.01), and PAFR expression (p<0.01). Pneumococcal adhesion to A549 cells was attenuated by CV-3988 (p<0.001). CSE 1% stimulated pneumococcal adhesion to BEAS2-B cells and HBEpC (p<0.01 vs control). CSE 1% increased PAFR expression in BEAS2-B (p<0.01), and in HBEpC (p<0.05). Lung PAFR transcript level was increased in mice exposed to CS in vivo (p<0.05 vs room air). Active smokers (n=16) had an increased percentage of bronchial epithelium with PAFR-positive cells (p<0.05 vs never smokers, n=11). Conclusion CSE stimulates PAFR-dependent pneumococcal adhesion to lower airway epithelial cells. We found evidence that CS increases bronchial PAFR in vivo.
Chest | 2013
Carla M. T. Bauer; Mathieu C. Morissette; Martin R. Stämpfli
COPD is a complex syndrome that poses a serious health threat to >1.1 billion smokers worldwide. The stable disease is punctuated by episodes of acute exacerbation, which are predominantly the result of viral and bacterial infections. Despite their devastating health impact, mechanisms underlying disease exacerbations remain poorly understood. Mounting evidence suggests that cigarette smoke profoundly affects the immune system, compromising the hosts ability to mount appropriate immune and inflammatory responses against microbial agents. This review highlights recent advances in our understanding of the impact of cigarette smoke on type 1 interferon and IL-1 signaling cascades. The immune defects caused by cigarette smoke on these two key pathways contribute to the seemingly contradictory nature of cigarette smoke as both a damaging and a proinflammatory factor as well as an immunosuppressive factor. Understanding the impact of cigarette smoke on the immune system may unravel novel targets for therapies that could affect acute exacerbations and COPD pathogenesis.
Journal of Immunology | 2014
Jake K. Nikota; Pamela Shen; Mathieu C. Morissette; Kimberly R. Fernandes; Abraham B. Roos; Derek K. Chu; Nicole G. Barra; Yoichiro Iwakura; Roland Kolbeck; Alison A. Humbles; Martin R. Stämpfli
Cigarette smoke has a broad impact on the mucosal environment with the ability to alter host defense mechanisms. Within the context of a bacterial infection, this altered host response is often accompanied by exacerbated cellular inflammation, characterized by increased neutrophilia. The current study investigated the mechanisms of neutrophil recruitment in a murine model of cigarette smoke exposure and, subsequently, a model of both cigarette smoke exposure and bacterial infection. We investigated the role of IL-1 signaling in neutrophil recruitment and found that cigarette smoke-induced neutrophilia was dependent on IL-1α produced by alveolar macrophages. In addition to being the crucial source of IL-1α, alveolar macrophages isolated from smoke-exposed mice were primed for excessive IL-1α production in response to bacterial ligands. To test the relevance of exaggerated IL-1α production in neutrophil recruitment, a model of cigarette smoke exposure and nontypeable Haemophilus influenzae infection was developed. Mice exposed to cigarette smoke elaborated an exacerbated CXCR2-dependent neutrophilia in response to nontypeable Haemophilus influenzae. Exacerbated neutrophilia was dependent on IL-1α priming of the pulmonary environment by cigarette smoke as exaggerated neutrophilia was dependent on IL-1 signaling. These data characterize a novel mechanism of cigarette smoke priming the lung mucosa toward greater IL-1–driven neutrophilic responses to bacteria, with a central role for the alveolar macrophage in this process.
Respiratory Research | 2007
Mathieu C. Morissette; Julie Parent; Julie Milot
BackgroundIt is generally accepted that emphysematous lungs are characterized by an increase in the numbers of neutrophils, macrophages, and CD8+ T lymphocytes, the lasts having increased cytotoxic activity. Because systemic inflammation is also a component of emphysema, we hypothesize that peripheral CD8+ T lymphocytes of emphysematous smokers who show evidence of systemic inflammation will have higher expression of cytotoxic molecules.MethodsWe assessed parameters of systemic inflammation in normal individuals (smokers or non-smokers) and in emphysematous subjects with an active smoking history by measuring serum interleukine-6, C-reactive protein, and tumor necrosis factor. Expression of perforin, granzyme B, and FasL protein by CD8+ T lymphocytes, CD4+ T lymphocytes, and natural killer cells were assessed by flow cytometry while perforin, granzyme B, and FasL mRNA expression were measured on purified systemic CD8+ T lymphocytes by real-time PCR.ResultsEmphysematous smokers had higher levels of serum interleukine-6 than normal subjects. Even with the presence of systemic inflammation in emphysematous smokers, the percentage of peripheral CD8+ T lymphocytes, CD4+ T lymphocytes, and NK cells expressing perforin and granzyme B protein was not different between the three groups.ConclusionDespite evidence of systemic inflammation, peripheral T lymphocytes of emphysematous smokers did not show higher levels of cytotoxic markers, suggesting that increase of activated T lymphocytes in the emphysematous lung may be due to either activation in the lung or specific peripheral recruitment.
PLOS ONE | 2014
Mathieu C. Morissette; Maxime Lamontagne; Jean-Christophe Bérubé; Gordon J. Gaschler; Andrew Williams; Carole L. Yauk; Christian Couture; Michel Laviolette; James C. Hogg; Wim Timens; Sabina Halappanavar; Martin R. Stämpfli; Yohan Bossé
Cigarette smoke is well known for its adverse effects on human health, especially on the lungs. Basic research is essential to identify the mechanisms involved in the development of cigarette smoke-related diseases, but translation of new findings from pre-clinical models to the clinic remains difficult. In the present study, we aimed at comparing the gene expression signature between the lungs of human smokers and mice exposed to cigarette smoke to identify the similarities and differences. Using human and mouse whole-genome gene expression arrays, changes in gene expression, signaling pathways and biological functions were assessed. We found that genes significantly modulated by cigarette smoke in humans were enriched for genes modulated by cigarette smoke in mice, suggesting a similar response of both species. Sixteen smoking-induced genes were in common between humans and mice including six newly reported to be modulated by cigarette smoke. In addition, we identified a new conserved pulmonary response to cigarette smoke in the induction of phospholipid metabolism/degradation pathways. Finally, the majority of biological functions modulated by cigarette smoke in humans were also affected in mice. Altogether, the present study provides information on similarities and differences in lung gene expression response to cigarette smoke that exist between human and mouse. Our results foster the idea that animal models should be used to study the involvement of pathways rather than single genes in human diseases.
American Journal of Respiratory and Critical Care Medicine | 2016
Olivier Boucherat; Mathieu C. Morissette; Steeve Provencher; Sébastien Bonnet; François Maltais
Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow limitation. This generic term encompasses emphysema and chronic bronchitis, two common conditions, each having distinct but also overlapping features. Recent epidemiological and experimental studies have challenged the traditional view that COPD is exclusively an adult disease occurring after years of inhalational insults to the lungs, pinpointing abnormalities or disruption of the pathways that control lung development as an important susceptibility factor for adult COPD. In addition, there is growing evidence that emphysema is not solely a destructive process because it is also characterized by a failure in cell and molecular maintenance programs necessary for proper lung development. This leads to the concept that tissue regeneration required stimulation of signaling pathways that normally operate during development. We undertook a review of the literature to outline the contribution of developmental insults and genes in the occurrence and pathogenesis of COPD, respectively.
Respiratory Research | 2014
Mathieu C. Morissette; Brian N. Jobse; Danya Thayaparan; Jake K. Nikota; Pamela Shen; N R. Labiris; Roland Kolbeck; Parameswaran Nair; Alison A. Humbles; Martin R. Stämpfli
Formation of pulmonary tertiary immune structures is a characteristic feature of advanced COPD. In the current study, we investigated the mechanisms of tertiary lymphoid tissue (TLT) formation in the lungs of cigarette smoke-exposed mice. We found that cigarette smoke exposure led to TLT formation that persisted following smoking cessation. TLTs consisted predominantly of IgM positive B cells, while plasma cells in close proximity to TLTs expressed IgM, IgG, and IgA. The presence of TLT formation was associated with anti-nuclear autoantibody (ANA) production that also persisted following smoking cessation. ANAs were observed in the lungs, but not the circulation of cigarette smoke-exposed mice. Similarly, we observed ANA in the sputum of COPD patients where levels correlated with disease severity and were refractory to steroid treatment. Both ANA production and TLT formation were dependent on interleukin-1 receptor 1 (IL-1R1) expression. Contrary to TLT and ANA, lung neutrophilia resolved following smoking cessation. These data suggest a differential regulation of innate and B cell-related immune inflammatory processes associated with cigarette smoke exposure. Moreover, our study further emphasizes the importance of interleukin-1 (IL-1) signaling pathways in cigarette smoke-related pulmonary pathogenesis.
PLOS ONE | 2013
Marc-André Caron; Mathieu C. Morissette; Marie-Eve Thériault; Jake K. Nikota; Martin R. Stämpfli; Richard Debigaré
Background Skeletal muscle dysfunction is common in chronic obstructive pulmonary disease (COPD), a disease mainly caused by chronic cigarette use. An important proportion of patients with COPD have decreased muscle mass, suggesting that chronic cigarette smoke exposure may interfere with skeletal muscle cellular equilibrium. Therefore, the main objective of this study was to investigate the kinetic of the effects that cigarette smoke exposure has on skeletal muscle cell signaling involved in protein homeostasis and to assess the reversibility of these effects. Methods A mouse model of cigarette smoke exposure was used to assess skeletal muscle changes. BALB/c mice were exposed to cigarette smoke or room air for 8 weeks, 24 weeks or 24 weeks followed by 60 days of cessation. The gastrocnemius and soleus muscles were collected and the activation state of key mediators involved in protein synthesis and degradation was assessed. Results Gastrocnemius and soleus were smaller in mice exposed to cigarette smoke for 8 and 24 weeks compared to room air exposed animals. Pro-degradation proteins were induced at the mRNA level after 8 and 24 weeks. Twenty-four weeks of cigarette smoke exposure induced pro-degradation proteins and reduced Akt phosphorylation and glycogen synthase kinase-3β quantity. A 60-day smoking cessation period reversed the cell signaling alterations induced by cigarette smoke exposure. Conclusions Repeated cigarette smoke exposure induces reversible muscle signaling alterations that are dependent on the duration of the cigarette smoke exposure. These results highlights a beneficial aspect associated with smoking cessation.