Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pamela Shen is active.

Publication


Featured researches published by Pamela Shen.


Journal of Experimental Medicine | 2014

Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo

Derek K. Chu; Rodrigo Jiménez-Saiz; Chris P. Verschoor; Tina D. Walker; Susanna Goncharova; Alba Llop-Guevara; Pamela Shen; Melissa E. Gordon; Nicole G. Barra; Jennifer Bassett; Joshua Kong; Ramzi Fattouh; Kathleen McCoy; Dawn M. E. Bowdish; Jonas Erjefält; Oliver Pabst; Alison A. Humbles; Roland Kolbeck; Susan Waserman; Manel Jordana

Eosinophil degranulation of peroxidase promotes DC activation and mobilization from the intestine to LNs to induce Th2 immunity and food allergy.


American Journal of Respiratory and Critical Care Medicine | 2015

Interleukin-17A Promotes Neutrophilia in Acute Exacerbation of Chronic Obstructive Pulmonary Disease.

Abraham B. Roos; Sanjay Sethi; Jake K. Nikota; Catherine Wrona; Michael G. Dorrington; Caroline Sandén; Carla M. T. Bauer; Pamela Shen; Dawn M. E. Bowdish; Christopher S. Stevenson; Jonas Erjefält; Martin R. Stämpfli

RATIONALE Nontypeable Haemophilus influenzae (NTHi) causes acute exacerbation of chronic obstructive pulmonary disease (AECOPD). IL-17A is central for neutrophilic inflammation and has been linked to COPD pathogenesis. OBJECTIVES We investigated whether IL-17A is elevated in NTHi-associated AECOPD and required for NTHi-exacerbated pulmonary neutrophilia induced by cigarette smoke. METHODS Experimental studies with cigarette smoke and NTHi infection were pursued in gene-targeted mice and using antibody intervention. IL-17A was measured in sputum collected from patients with COPD at baseline, during, and after AECOPD. MEASUREMENTS AND MAIN RESULTS Exacerbated airway neutrophilia in cigarette smoke-exposed mice infected with NTHi was associated with an induction of IL-17A. In agreement, elevated IL-17A was observed in sputum collected during NTHi-associated AECOPD, compared with samples collected before or after the event. NTHi-exacerbated neutrophilia and induction of neutrophil chemoattractants over the background of cigarette smoke, as observed in wild-type mice, was absent in Il17a(-/-) mice and in mice treated with a neutralizing anti-IL-17A antibody. Further studies revealed that IL-1 receptor (R)1 signaling was required for IL-17A-dependent neutrophilia. Moreover, deficiency or therapeutic neutralization of IL-17A did not increase bacterial burden or delay bacterial clearance. CONCLUSIONS IL-17A is induced during NTHi-associated AECOPD. Functionally, IL-1R1-dependent IL-17A is required for NTHi-exacerbated pulmonary neutrophilia induced by cigarette smoke. Targeting IL-17A in AECOPD may thus be beneficial to reduce neutrophil recruitment to the airways.


Journal of Immunology | 2014

Cigarette Smoke Primes the Pulmonary Environment to IL-1α/CXCR-2–Dependent Nontypeable Haemophilus influenzae–Exacerbated Neutrophilia in Mice

Jake K. Nikota; Pamela Shen; Mathieu C. Morissette; Kimberly R. Fernandes; Abraham B. Roos; Derek K. Chu; Nicole G. Barra; Yoichiro Iwakura; Roland Kolbeck; Alison A. Humbles; Martin R. Stämpfli

Cigarette smoke has a broad impact on the mucosal environment with the ability to alter host defense mechanisms. Within the context of a bacterial infection, this altered host response is often accompanied by exacerbated cellular inflammation, characterized by increased neutrophilia. The current study investigated the mechanisms of neutrophil recruitment in a murine model of cigarette smoke exposure and, subsequently, a model of both cigarette smoke exposure and bacterial infection. We investigated the role of IL-1 signaling in neutrophil recruitment and found that cigarette smoke-induced neutrophilia was dependent on IL-1α produced by alveolar macrophages. In addition to being the crucial source of IL-1α, alveolar macrophages isolated from smoke-exposed mice were primed for excessive IL-1α production in response to bacterial ligands. To test the relevance of exaggerated IL-1α production in neutrophil recruitment, a model of cigarette smoke exposure and nontypeable Haemophilus influenzae infection was developed. Mice exposed to cigarette smoke elaborated an exacerbated CXCR2-dependent neutrophilia in response to nontypeable Haemophilus influenzae. Exacerbated neutrophilia was dependent on IL-1α priming of the pulmonary environment by cigarette smoke as exaggerated neutrophilia was dependent on IL-1 signaling. These data characterize a novel mechanism of cigarette smoke priming the lung mucosa toward greater IL-1–driven neutrophilic responses to bacteria, with a central role for the alveolar macrophage in this process.


Respiratory Research | 2014

Persistence of pulmonary tertiary lymphoid tissues and anti-nuclear antibodies following cessation of cigarette smoke exposure

Mathieu C. Morissette; Brian N. Jobse; Danya Thayaparan; Jake K. Nikota; Pamela Shen; N R. Labiris; Roland Kolbeck; Parameswaran Nair; Alison A. Humbles; Martin R. Stämpfli

Formation of pulmonary tertiary immune structures is a characteristic feature of advanced COPD. In the current study, we investigated the mechanisms of tertiary lymphoid tissue (TLT) formation in the lungs of cigarette smoke-exposed mice. We found that cigarette smoke exposure led to TLT formation that persisted following smoking cessation. TLTs consisted predominantly of IgM positive B cells, while plasma cells in close proximity to TLTs expressed IgM, IgG, and IgA. The presence of TLT formation was associated with anti-nuclear autoantibody (ANA) production that also persisted following smoking cessation. ANAs were observed in the lungs, but not the circulation of cigarette smoke-exposed mice. Similarly, we observed ANA in the sputum of COPD patients where levels correlated with disease severity and were refractory to steroid treatment. Both ANA production and TLT formation were dependent on interleukin-1 receptor 1 (IL-1R1) expression. Contrary to TLT and ANA, lung neutrophilia resolved following smoking cessation. These data suggest a differential regulation of innate and B cell-related immune inflammatory processes associated with cigarette smoke exposure. Moreover, our study further emphasizes the importance of interleukin-1 (IL-1) signaling pathways in cigarette smoke-related pulmonary pathogenesis.


European Respiratory Journal | 2015

Disruption of pulmonary lipid homeostasis drives cigarette smoke-induced lung inflammation in mice

Mathieu C. Morissette; Pamela Shen; Danya Thayaparan; Martin R. Stämpfli

Overwhelming evidence links inflammation to the pathogenesis of smoking-related pulmonary diseases, especially chronic obstructive pulmonary disease (COPD). Despite an increased understanding of the disease pathogenesis, mechanisms initiating smoking-induced inflammatory processes remain incompletely understood. To investigate the mechanisms that initiate and propagate smoke-induced inflammation, we used a well-characterised mouse model of cigarette smoke exposure, mice deficient for interleukin (IL)-1α, IL-1β and Toll-like receptor 4, and antibodies blocking granulocyte-macrophage colony-stimulating factor (GM-CSF). Studies were also pursued using intranasal delivery of human oxidised low-density lipoprotein (hOxLDL), a source of oxidised lipids, to investigate the inflammatory processes associated with impaired lipid homeostasis. We found that cigarette smoke exposure rapidly led to lipid accumulation in pulmonary macrophages, a defining feature of foam cells, which in turn released high levels of IL-1α. In smoke-exposed IL-1α-deficient mice, phospholipids accumulated in the bronchoalveolar lavage, a phenomenon also observed when blocking GM-CSF. Intranasal administration of hOxLDL led to lipid accumulation in macrophages and initiated an inflammatory process that mirrored the characteristics of cigarette smoke-induced inflammation. These findings identify a link between lipid accumulation in macrophages, inflammation and damaged surfactant, suggesting that the response to damaged pulmonary surfactant is a central mechanism that drives cigarette smoke-induced inflammation. Further investigations are required to explore the role of distorted lipid homeostasis in the pathogenesis of COPD. Lipid accumulation in pulmonary macrophages drives cigarette smoke-induced lung inflammation http://ow.ly/M0L0U


PLOS ONE | 2015

The Relationship between Depression and Asthma: A Meta-Analysis of Prospective Studies.

Yong-hua Gao; Huasi Zhao; Fu-rui Zhang; Yang Gao; Pamela Shen; Rongchang Chen; Guo-jun Zhang

Background Previous studies have suggested that asthmatic patients often have comorbid depression; however, temporal associations remain unclear. Objectives To determine whether depression predicts asthma and, conversely, whether asthma predicts depression. Methods A literature search was conducted without language restrictions using Pubmed, Embase, Cochrane and PsycINFO for studies published before January, 2015. Papers referenced by the obtained articles were also reviewed. Only comparative prospective studies with reported risk estimates of the association between depression and asthma were included. In order to investigate whether one of these conditions was predictive of the other, studies were excluded if enrolled participants had pre-existing depression or asthma. A random-effects model was used to calculate the pooled risk estimates for two outcomes: depression predicting asthma and asthma predicting depression. Results Seven citations, derived from 8 cohort studies, met our inclusion criteria. Of these, six studies reported that depression predicted incident adult-onset asthma, including 83684 participants and 2334 incident cases followed for 8 to 20 years. Conversely, two studies reported that asthma predicted incident depression. These studies involved 25566 participants and 2655 incident cases followed for 10 and 20 years, respectively. The pooled adjusted relative risks (RRs) of acquiring asthma associated with baseline depression was 1.43 (95% CI, 1.28–1.61) (P<0.001). The adjusted RRs for acquiring depression associated with baseline asthma was 1.23 (95% CI, 0.72–2.10) (P = 0.45). Conclusions Depression was associated with a 43% increased risk of developing adult-onset asthma. However, asthma did not increase the risk of depression based on limited studies. Further prospective studies ascertaining the true association between asthma and subsequent risk of depression are warranted.


European Respiratory Journal | 2015

Impacts of peroxisome proliferator-activated receptor-γ activation on cigarette smoke-induced exacerbated response to bacteria

Mathieu C. Morissette; Pamela Shen; Danya Thayaparan; Martin R. Stämpfli

Chronic obstructive pulmonary disease (COPD) is characterised by a state of chronic pulmonary inflammation punctuated by microbial exacerbations. Despite advances in treatment options, COPD remains difficult to manage. In this study, we investigated the potential of peroxisome proliferator-activated receptor (PPAR)γ activation as a new therapy against cigarette smoke-induced inflammation and its associated bacterial exacerbation. C57BL/6 mice were exposed to room air or cigarette smoke for either 4 days or 4 weeks and treated either prophylactically or therapeutically with rosiglitazone. The impact of rosiglitazone on cigarette smoke-induced exacerbated response to the bacterial pathogen nontypeable Haemophilus influenzae (NTHi) was studied using the therapeutic treatment protocol. We found that rosiglitazone was able to reduce cigarette smoke-induced neutrophilia both when administered prophylactically or therapeutically. Therapeutic intervention with rosiglitazone was also effective in preventing cigarette smoke-induced neutrophilia exacerbation following NTHi infection. Moreover, the anti-inflammatory effects of rosiglitazone did not lead to an increase in the pulmonary bacterial burden, unlike dexamethasone. Altogether, our data suggest that pharmacological activation of PPARγ may be an effective therapeutic approach to improve COPD management, as it is able to reduce cigarette smoke-induced inflammation and decrease the magnitude of bacterial exacerbations, without compromising the ability of the immune system to control the infection. Activation of PPARγ may help reduce cigarette smoke-induced inflammation and the associated bacterial exacerbations http://ow.ly/xHpdN


Respiratory Research | 2016

Induction of pulmonary antibodies against oxidized lipids in mice exposed to cigarette smoke.

Danya Thayaparan; Pamela Shen; Martin R. Stämpfli; Mathieu C. Morissette

BackgroundChronic cigarette smoke exposure is known to activate the adaptive immune system; however, the functional role of these processes is currently unknown. Given the role of oxidized lipids in driving innate inflammatory responses to cigarette smoke, we investigated whether an adaptive immune response against damaged lipids was induced following chronic cigarette smoke exposure.Methods and resultsUsing a well-established mouse model, we showed that cigarette smoke exposure led to a progressive increase in pulmonary antibodies against oxidized low-density lipoprotein (OxLDL). Functionally, we found that intranasal delivery of an antibody against oxidized phosphatidylcholine (anti-OxPC; clone E06) increased lipid and particle uptake by pulmonary macrophages without exacerbating cigarette smoke-induced neutrophilia. We also found that anti-OxPC treatment increased particle uptake following smoking cessation. Finally, the frequency of pulmonary macrophages with internalized particles was increased after prolonged smoke exposure, at which time lung anti-OxPC responses were highest.ConclusionsAltogether, this is the first report to demonstrate a non-pathogenic, and possibly protective, function of a newly identified autoantibody induced by chronic cigarette smoke exposure.


Physiological Reports | 2016

Role of BAFF in pulmonary autoantibody responses induced by chronic cigarette smoke exposure in mice

Mathieu C. Morissette; Yang Gao; Pamela Shen; Danya Thayaparan; Jean-Christophe Bérubé; Peter D. Paré; Corry-Anke Brandsma; Ke Hao; Yohan Bossé; Rachel Ettinger; Ronald Herbst; Alison A. Humbles; Roland Kolbeck; Nanshan Zhong; Rongchang Chen; Martin R. Stämpfli

Emerging evidence suggests that autoimmune processes are implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). In this study, we assessed the expression of B‐cell activating factor (BAFF) in smokers, and investigated the functional importance of BAFF in the induction and maintenance of cigarette smoke‐induced pulmonary antinuclear antibodies (ANA) and tertiary lymphoid tissues (TLTs) using a preclinical mouse model. We observed that BAFF levels were elevated in smokers and mice exposed to cigarette smoke. In mice, BAFF expression was rapidly induced in the lungs following 4 days of cigarette smoke exposure and remained elevated following 8 and 24 weeks of exposure. Alveolar macrophages were the major source of BAFF. Blockade of BAFF using a BAFF receptor‐Fc (BAFFR‐Fc) construct prevented pulmonary ANA and TLT formation when delivered concurrent with cigarette smoke exposure. Under these conditions, no impact on lung inflammation was observed. However, administration of BAFFR‐Fc following smoking cessation markedly reduced the number of TLTs and ANA levels and, of note, reduced pulmonary neutrophilia. Altogether, this study shows for the first time a central role of BAFF in the induction and maintenance of cigarette smoke‐induced pulmonary ANA and suggests that BAFF blockade following smoking cessation could have beneficial effects on persistent inflammatory processes.


American Journal of Respiratory Cell and Molecular Biology | 2017

Identification of Drug Candidates to Suppress Cigarette Smoke-induced Inflammation via cMap Analyses

Gilles Vanderstocken; Anna Dvorkin-Gheva; Pamela Shen; Corry-Anke Brandsma; Ma’en Obeidat; Yohan Bossé; John A. Hassell; Martin R. Stämpfli

Abstract Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease, and to date, existing pharmacologic interventions have been ineffective at controlling inflammatory processes associated with the disease. To address this issue, we used the Connectivity Map (cMap) database to identify drug candidates with the potential to attenuate cigarette smoke‐induced inflammation. We queried cMap using three independent in‐house cohorts of healthy nonsmokers and smokers. Potential drug candidates were validated against four publicly available human datasets, as well as six independent datasets from cigarette smoke‐exposed mice. Overall, these analyses yielded two potential drug candidates: kaempferol and bethanechol. Subsequently, the efficacy of each drug was validated in vivo in a model of cigarette smoke‐induced inflammation. BALB/c mice were exposed to room air or cigarette smoke and treated with each of the two candidate drugs either prophylactically or therapeutically. We found that kaempferol, but not bethanechol, was able to reduce cigarette smoke‐induced neutrophilia, both when administered prophylactically and when administered therapeutically. Mechanistically, kaempferol decreased expression of IL‐1&agr; and CXCL5 concentrations in the lung. Our data suggest that cMap analyses may serve as a useful tool to identify novel drug candidates against cigarette smoke‐induced inflammation.

Collaboration


Dive into the Pamela Shen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge