Martina Kutmon
Maastricht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martina Kutmon.
Nature Biotechnology | 2010
Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur
Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.
Nucleic Acids Research | 2012
Thomas Kelder; Martijn P. van Iersel; Kristina Hanspers; Martina Kutmon; Bruce R. Conklin; Chris T. Evelo; Alexander R. Pico
Here, we describe the development of WikiPathways (http://www.wikipathways.org), a public wiki for pathway curation, since it was first published in 2008. New features are discussed, as well as developments in the community of contributors. New features include a zoomable pathway viewer, support for pathway ontology annotations, the ability to mark pathways as private for a limited time and the availability of stable hyperlinks to pathways and the elements therein. WikiPathways content is freely available in a variety of formats such as the BioPAX standard, and the content is increasingly adopted by external databases and tools, including Wikipedia. A recent development is the use of WikiPathways as a staging ground for centrally curated databases such as Reactome. WikiPathways is seeing steady growth in the number of users, page views and edits for each pathway. To assess whether the community curation experiment can be considered successful, here we analyze the relation between use and contribution, which gives results in line with other wiki projects. The novel use of pathway pages as supplementary material to publications, as well as the addition of tailored content for research domains, is expected to stimulate growth further.
Nucleic Acids Research | 2016
Martina Kutmon; Anders Riutta; Nuno Nunes; Kristina Hanspers; Egon Willighagen; Anwesha Bohler; Jonathan Mélius; Andra Waagmeester; Sravanthi R. Sinha; Ryan Miller; Susan L. Coort; Elisa Cirillo; Bart Smeets; Chris T. Evelo; Alexander R. Pico
WikiPathways (http://www.wikipathways.org) is an open, collaborative platform for capturing and disseminating models of biological pathways for data visualization and analysis. Since our last NAR update, 4 years ago, WikiPathways has experienced massive growth in content, which continues to be contributed by hundreds of individuals each year. New aspects of the diversity and depth of the collected pathways are described from the perspective of researchers interested in using pathway information in their studies. We provide updates on extensions and services to support pathway analysis and visualization via popular standalone tools, i.e. PathVisio and Cytoscape, web applications and common programming environments. We introduce the Quick Edit feature for pathway authors and curators, in addition to new means of publishing pathways and maintaining custom pathway collections to serve specific research topics and communities. In addition to the latest milestones in our pathway collection and curation effort, we also highlight the latest means to access the content as publishable figures, as standard data files, and as linked data, including bulk and programmatic access.
PLOS Computational Biology | 2015
Martina Kutmon; Martijn P. van Iersel; Anwesha Bohler; Thomas Kelder; Nuno Nunes; Alexander R. Pico; Chris T. Evelo
PathVisio is a commonly used pathway editor, visualization and analysis software. Biological pathways have been used by biologists for many years to describe the detailed steps in biological processes. Those powerful, visual representations help researchers to better understand, share and discuss knowledge. Since the first publication of PathVisio in 2008, the original paper was cited more than 170 times and PathVisio was used in many different biological studies. As an online editor PathVisio is also integrated in the community curated pathway database WikiPathways. Here we present the third version of PathVisio with the newest additions and improvements of the application. The core features of PathVisio are pathway drawing, advanced data visualization and pathway statistics. Additionally, PathVisio 3 introduces a new powerful extension systems that allows other developers to contribute additional functionality in form of plugins without changing the core application. PathVisio can be downloaded from http://www.pathvisio.org and in 2014 PathVisio 3 has been downloaded over 5,500 times. There are already more than 15 plugins available in the central plugin repository. PathVisio is a freely available, open-source tool published under the Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0). It is implemented in Java and thus runs on all major operating systems. The code repository is available at http://svn.bigcat.unimaas.nl/pathvisio. The support mailing list for users is available on https://groups.google.com/forum/#!forum/wikipathways-discuss and for developers on https://groups.google.com/forum/#!forum/wikipathways-devel.
PLOS ONE | 2013
Martina Kutmon; Thomas Kelder; Pooja R. Mandaviya; Chris T. Evelo; Susan L. Coort
Introduction The high complexity and dynamic nature of the regulation of gene expression, protein synthesis, and protein activity pose a challenge to fully understand the cellular machinery. By deciphering the role of important players, including transcription factors, microRNAs, or small molecules, a better understanding of key regulatory processes can be obtained. Various databases contain information on the interactions of regulators with their targets for different organisms, data recently being extended with the results of the ENCODE (Encyclopedia of DNA Elements) project. A systems biology approach integrating our understanding on different regulators is essential in interpreting the regulation of molecular biological processes. Implementation We developed CyTargetLinker (http://projects.bigcat.unimaas.nl/cytargetlinker), a Cytoscape app, for integrating regulatory interactions in network analysis. Recently we released CyTargetLinker as one of the first apps for Cytoscape 3. It provides a user-friendly and flexible interface to extend biological networks with regulatory interactions, such as microRNA-target, transcription factor-target and/or drug-target. Importantly, CyTargetLinker employs identifier mapping to combine various interaction data resources that use different types of identifiers. Results Three case studies demonstrate the strength and broad applicability of CyTargetLinker, (i) extending a mouse molecular interaction network, containing genes linked to diabetes mellitus, with validated and predicted microRNAs, (ii) enriching a molecular interaction network, containing DNA repair genes, with ENCODE transcription factor and (iii) building a regulatory meta-network in which a biological process is extended with information on transcription factor, microRNA and drug regulation. Conclusions CyTargetLinker provides a simple and extensible framework for biologists and bioinformaticians to integrate different regulatory interactions into their network analysis approaches. Visualization options enable biological interpretation of complex regulatory networks in a graphical way. Importantly the incorporation of our tool into the Cytoscape framework allows the application of CyTargetLinker in combination with a wide variety of other apps for state-of-the-art network analysis.
Genes and Nutrition | 2013
Sabine Daemen; Martina Kutmon; Chris T. Evelo
The essential function of sterol regulatory element-binding proteins (SREBPs) in cellular lipid metabolism and homeostasis has been recognized for a long time, and the basic biological pathway involving SREBPs has been well described; however, a rapidly growing number of studies reveal the complex regulation of these SREBP transcription factors at multiple levels. This regulation allows the integration of signals of diverse pathways involving nutrients, contributing to cellular lipid and energy homeostasis. This review attempts to integrate this knowledge. The description of the SREBP pathway is Web-linked as it refers to the online version of the pathway on wikipathways.org, which is interactively linked to genomics databases and literature. This allows a more extensive study of the pathway through reviewing these links.
Nucleic Acids Research | 2018
Denise Slenter; Martina Kutmon; Kristina Hanspers; Anders Riutta; Jacob Windsor; Nuno Nunes; Jonathan Mélius; Elisa Cirillo; Susan L. Coort; Daniela Digles; Friederike Ehrhart; Pieter Giesbertz; Marianthi Kalafati; Marvin Martens; Ryan Miller; Kozo Nishida; Linda Rieswijk; Andra Waagmeester; Lars Eijssen; Chris T. Evelo; Alexander R. Pico; Egon Willighagen
Abstract WikiPathways (wikipathways.org) captures the collective knowledge represented in biological pathways. By providing a database in a curated, machine readable way, omics data analysis and visualization is enabled. WikiPathways and other pathway databases are used to analyze experimental data by research groups in many fields. Due to the open and collaborative nature of the WikiPathways platform, our content keeps growing and is getting more accurate, making WikiPathways a reliable and rich pathway database. Previously, however, the focus was primarily on genes and proteins, leaving many metabolites with only limited annotation. Recent curation efforts focused on improving the annotation of metabolism and metabolic pathways by associating unmapped metabolites with database identifiers and providing more detailed interaction knowledge. Here, we report the outcomes of the continued growth and curation efforts, such as a doubling of the number of annotated metabolite nodes in WikiPathways. Furthermore, we introduce an OpenAPI documentation of our web services and the FAIR (Findable, Accessible, Interoperable and Reusable) annotation of resources to increase the interoperability of the knowledge encoded in these pathways and experimental omics data. New search options, monthly downloads, more links to metabolite databases, and new portals make pathway knowledge more effortlessly accessible to individual researchers and research communities.
F1000Research | 2014
Martina Kutmon; Samad Lotia; Chris T. Evelo; Alexander R. Pico
In this paper we present the open-source WikiPathways app for Cytoscape ( http://apps.cytoscape.org/apps/wikipathways) that can be used to import biological pathways for data visualization and network analysis. WikiPathways is an open, collaborative biological pathway database that provides fully annotated pathway diagrams for manual download or through web services. The WikiPathways app allows users to load pathways in two different views: as an annotated pathway ideal for data visualization and as a simple network to perform computational analysis. An example pathway and dataset are used to demonstrate the functionality of the WikiPathways app and how they can be combined and used together with other apps. More than 3000 downloads in the first 12 months following its release in August 2013 highlight the importance and adoption of the app in the network biology field.In this paper we present the open-source WikiPathways app for Cytoscape ( http://apps.cytoscape.org/apps/wikipathways) that can be used to import biological pathways for data visualization and network analysis. WikiPathways is an open, collaborative biological pathway database that provides fully annotated pathway diagrams for manual download or through web services. The WikiPathways app allows users to load pathways in two different views: as an annotated pathway ideal for data visualization and as a simple network to perform computational analysis. An example pathway and dataset are used to demonstrate the functionality of the WikiPathways app and how they can be combined and used together with other apps. More than 3000 downloads in the first 12 months following its release in August 2013 highlight the importance and adoption of the app in the network biology field.
BMC Genomics | 2014
Martina Kutmon; Chris T. Evelo; Susan L. Coort
BackgroundNowadays a broad collection of transcriptomics data is publicly available in online repositories. Methods for analyzing these data often aim at deciphering the influence of gene expression at the process level. Biological pathway diagrams depict known processes and capture the interactions of gene products and metabolites, information that is essential for the computational analysis and interpretation of transcriptomics data.The present study describes a comprehensive network biology workflow that integrates differential gene expression in the human diabetic liver with pathway information by building a network of interconnected pathways. Worldwide, the incidence of type 2 diabetes mellitus is increasing dramatically, and to better understand this multifactorial disease, more insight into the concerted action of the disease-related processes is needed. The liver is a key player in metabolic diseases and diabetic patients often develop non-alcoholic fatty liver disease.ResultsA publicly available dataset comparing the liver transcriptome from lean and healthy vs. obese and insulin-resistant subjects was selected after a thorough analysis. Pathway analysis revealed seven significantly altered pathways in the WikiPathways human pathway collection. These pathways were then merged into one combined network with 408 gene products, 38 metabolites and 5 pathway nodes. Further analysis highlighted 17 nodes present in multiple pathways, and revealed the connections between different pathways in the network. The integration of transcription factor-gene interactions from the ENCODE project identified new links between the pathways on a regulatory level. The extension of the network with known drug-target interactions from DrugBank allows for a more complete study of drug actions and helps with the identification of other drugs that target proteins up- or downstream which might interfere with the action or efficiency of a drug.ConclusionsThe described network biology workflow uses state-of-the-art pathway and network analysis methods to study the rewiring of the diabetic liver. The integration of experimental data and knowledge on disease-affected biological pathways, including regulatory elements like transcription factors or drugs, leads to improved insights and a clearer illustration of the overall process. It also provides a resource for building new hypotheses for further follow-up studies. The approach is highly generic and can be applied in different research fields.
PLOS Computational Biology | 2016
Andra Waagmeester; Martina Kutmon; Anders Riutta; Ryan Miller; Egon Willighagen; Chris T. Evelo; Alexander R. Pico
The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web.