Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martina Minnich is active.

Publication


Featured researches published by Martina Minnich.


Nature Immunology | 2011

The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells

Erika Cretney; Annie Xin; Wei Shi; Martina Minnich; Frederick Masson; Maria Miasari; Gabrielle T. Belz; Gordon K. Smyth; Meinrad Busslinger; Stephen L. Nutt; Axel Kallies

Regulatory T cells (Treg cells) are required for peripheral tolerance. Evidence indicates that Treg cells can adopt specialized differentiation programs in the periphery that are controlled by transcription factors usually associated with helper T cell differentiation. Here we demonstrate that expression of the transcription factor Blimp-1 defined a population of Treg cells that localized mainly to mucosal sites and produced IL-10. Blimp-1 was required for IL-10 production by these cells and for their tissue homeostasis. We provide evidence that the transcription factor IRF4, but not the transcription factor T-bet, was essential for Blimp-1 expression and for the differentiation of all effector Treg cells. Thus, our study defines a differentiation pathway that leads to the acquisition of Treg cell effector functions and requires both IRF4 and Blimp-1.


Science | 2016

Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes

Laura K. Mackay; Martina Minnich; Natasja A. M. Kragten; Yang Liao; Benjamin Nota; Cyril Seillet; Ali Zaid; Kevin Man; Simon Preston; David Freestone; Asolina Braun; Erica Wynne-Jones; Felix M. Behr; Regina Stark; Daniel G. Pellicci; Dale I. Godfrey; Gabrielle T. Belz; Marc Pellegrini; Thomas Gebhardt; Meinrad Busslinger; Wei Shi; Francis R. Carbone; René A. W. van Lier; Axel Kallies; Klaas P. J. M. van Gisbergen

Transcription factors define tissue T cells The immune system fights microbial invaders by maintaining multiple lines of defense. For instance, specialized memory T cells [resident memory T cells (Trms)] colonize portals of pathogen entry, such as the skin, lung, and gut, to quickly halt reinfections. Mackay et al. now report that in mice, Trms as well as other tissue-dwelling lymphocyte populations such as natural killer cells share a common transcriptional program driven by the related transcription factors Hobit and Blimp1. Tissue residency and retention of lymphocytes require expression of Hobit and Blimp1, which, among other functions, suppress genes that promote tissue exit. Science, this issue p. 459 Tissue-dwelling lymphocyte populations share a common transcriptional signature. Tissue-resident memory T (Trm) cells permanently localize to portals of pathogen entry, where they provide immediate protection against reinfection. To enforce tissue retention, Trm cells up-regulate CD69 and down-regulate molecules associated with tissue egress; however, a Trm-specific transcriptional regulator has not been identified. Here, we show that the transcription factor Hobit is specifically up-regulated in Trm cells and, together with related Blimp1, mediates the development of Trm cells in skin, gut, liver, and kidney in mice. The Hobit-Blimp1 transcriptional module is also required for other populations of tissue-resident lymphocytes, including natural killer T (NKT) cells and liver-resident NK cells, all of which share a common transcriptional program. Our results identify Hobit and Blimp1 as central regulators of this universal program that instructs tissue retention in diverse tissue-resident lymphocyte populations.


Journal of Immunology | 2014

Differential Requirement for Nfil3 during NK Cell Development

Cyril Seillet; Nicholas D. Huntington; Pradnya Gangatirkar; Elin Axelsson; Martina Minnich; Hugh J. M. Brady; Meinrad Busslinger; Mark J. Smyth; Gabrielle T. Belz; Sebastian Carotta

NK cells can be grouped into distinct subsets that are localized to different organs and exhibit a different capacity to secrete cytokines and mediate cytotoxicity. Despite these hallmarks that reflect tissue-specific specialization in NK cells, little is known about the factors that control the development of these distinct subsets. The basic leucine zipper transcription factor Nfil3 (E4bp4) is essential for bone marrow–derived NK cell development, but it is not clear whether Nfil3 is equally important for all NK cell subsets or how it induces NK lineage commitment. In this article, we show that Nfil3 is required for the formation of Eomes-expressing NK cells, including conventional medullary and thymic NK cells, whereas TRAIL+ Eomes− NK cells develop independently of Nfil3. Loss of Nfil3 during the development of bone marrow–derived NK cells resulted in reduced expression of Eomes and, conversely, restoration of Eomes expression in Nfil3−/− progenitors rescued NK cell development and maturation. Collectively, these findings demonstrate that Nfil3 drives the formation of mature NK cells by inducing Eomes expression and reveal the differential requirements of NK cell subsets for Nfil3.


Nature Immunology | 2016

Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation

Martina Minnich; Hiromi Tagoh; Peter Bönelt; Elin Axelsson; Maria Fischer; Beatriz Cebolla; Alexander Tarakhovsky; Stephen L. Nutt; Markus Jaritz; Meinrad Busslinger

The transcription factor Blimp-1 is necessary for the generation of plasma cells. Here we studied its functions in plasmablast differentiation by identifying regulated Blimp-1 target genes. Blimp-1 promoted the migration and adhesion of plasmablasts. It directly repressed genes encoding several transcription factors and Aicda (which encodes the cytidine deaminase AID) and thus silenced B cell–specific gene expression, antigen presentation and class-switch recombination in plasmablasts. It directly activated genes, which led to increased expression of the plasma cell regulator IRF4 and proteins involved in immunoglobulin secretion. Blimp-1 induced the transcription of immunoglobulin genes by controlling the 3′ enhancers of the loci encoding the immunoglobulin heavy chain (Igh) and κ-light chain (Igk) and, furthermore, regulated the post-transcriptional expression switch from the membrane-bound form of the immunoglobulin heavy chain to its secreted form by activating Ell2 (which encodes the transcription-elongation factor ELL2). Notably, Blimp-1 recruited chromatin-remodeling and histone-modifying complexes to regulate its target genes. Hence, many essential functions of plasma cells are under the control of Blimp-1.


The EMBO Journal | 2014

The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells

Jennifer Jurkin; Theresa Henkel; Anne F. Nielsen; Martina Minnich; Johannes Popow; Therese Kaufmann; Katrin Heindl; Thomas Hoffmann; Meinrad Busslinger; Javier Martinez

The unfolded protein response (UPR) is a conserved stress‐signaling pathway activated after accumulation of unfolded proteins within the endoplasmic reticulum (ER). Active UPR signaling leads to unconventional, enzymatic splicing of XBP1 mRNA enabling expression of the transcription factor XBP1s to control ER homeostasis. While IRE1 has been identified as the endoribonuclease required for cleavage of this mRNA, the corresponding ligase in mammalian cells has remained elusive. Here, we report that RTCB, the catalytic subunit of the tRNA ligase complex, and its co‐factor archease mediate XBP1 mRNA splicing both in vitro and in vivo. Depletion of RTCB in plasma cells of Rtcbfl/fl Cd23‐Cre mice prevents XBP1s expression, which normally is strongly induced during plasma cell development. RTCB‐depleted plasma cells show reduced and disorganized ER structures as well as severe defects in antibody secretion. Targeting RTCB and/or archease thus represents a promising strategy for the treatment of a growing number of diseases associated with elevated expression of XBP1s.


Journal of Experimental Medicine | 2012

Essential role of EBF1 in the generation and function of distinct mature B cell types

Bojan Vilagos; Mareike Hoffmann; Abdallah Souabni; Qiong Sun; Barbara Werner; Jasna Medvedovic; Ivan Bilic; Martina Minnich; Elin Axelsson; Markus Jaritz; Meinrad Busslinger

Gain- and loss-of-function analyses reveal that the transcription factor EBF1 is required for normal differentiation and function of marginal zone, B-1, follicular, and germinal center B cells in mice.


Nature Immunology | 2016

Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response

Julie Tellier; Wei Shi; Martina Minnich; Yang Liao; Simon Crawford; Gordon K. Smyth; Axel Kallies; Meinrad Busslinger; Stephen L. Nutt

Plasma cell differentiation requires silencing of B cell transcription, while it establishes antibody-secretory function and long-term survival. The transcription factors Blimp-1 and IRF4 are essential for the generation of plasma cells; however, their function in mature plasma cells has remained elusive. We found that while IRF4 was essential for the survival of plasma cells, Blimp-1 was dispensable for this. Blimp-1-deficient plasma cells retained their transcriptional identity but lost the ability to secrete antibody. Blimp-1 regulated many components of the unfolded protein response (UPR), including XBP-1 and ATF6. The overlap in the functions of Blimp-1 and XBP-1 was restricted to that response, with Blimp-1 uniquely regulating activity of the kinase mTOR and the size of plasma cells. Thus, Blimp-1 was required for the unique physiological ability of plasma cells that enables the secretion of protective antibody.


Journal of Immunology | 2013

Id2-Mediated Inhibition of E2A Represses Memory CD8+ T Cell Differentiation

Frederick Masson; Martina Minnich; Moshe Olshansky; Ivan Bilic; Adele M. Mount; Axel Kallies; Terence P. Speed; Meinrad Busslinger; Stephen L. Nutt; Gabrielle T. Belz

The transcription factor inhibitor of DNA binding (Id)2 modulates T cell fate decisions, but the molecular mechanism underpinning this regulation is unclear. In this study we show that loss of Id2 cripples effector differentiation and instead programs CD8+ T cells to adopt a memory fate with increased Eomesodermin and Tcf7 expression. We demonstrate that Id2 restrains CD8+ T cell memory differentiation by inhibiting E2A-mediated direct activation of Tcf7 and that Id2 expression level mirrors T cell memory recall capacity. As a result of the defective effector differentiation, Id2-deficient CD8+ T cells fail to induce sufficient Tbx21 expression to generate short-lived effector CD8+ T cells. Our findings reveal that the Id2/E2A axis orchestrates T cell differentiation through the induction or repression of downstream transcription factors essential for effector and memory T cell differentiation.


Immunity | 2016

The Helix-Loop-Helix Protein ID2 Governs NK Cell Fate by Tuning Their Sensitivity to Interleukin-15

Rebecca B. Delconte; Wei Shi; Priyanka Sathe; Takashi Ushiki; Cyril Seillet; Martina Minnich; Tatiana B. Kolesnik; Lucille C. Rankin; Lisa A. Mielke; Jian-Guo Zhang; Meinrad Busslinger; Mark J. Smyth; Dana S. Hutchinson; Stephen L. Nutt; Sandra E. Nicholson; Warren S. Alexander; Lynn M. Corcoran; Eric Vivier; Gabrielle T. Belz; Sebastian Carotta; Nicholas D. Huntington

The inhibitor of DNA binding 2 (Id2) is essential for natural killer (NK) cell development with its canonical role being to antagonize E-protein function and alternate lineage fate. Here we have identified a key role for Id2 in regulating interleukin-15 (IL-15) receptor signaling and homeostasis of NK cells by repressing multiple E-protein target genes including Socs3. Id2 deletion in mature NK cells was incompatible with their homeostasis due to impaired IL-15 receptor signaling and metabolic function and this could be rescued by strong IL-15 receptor stimulation or genetic ablation of Socs3. During NK cell maturation, we observed an inverse correlation between E-protein target genes and Id2. These results shift the current paradigm on the role of ID2, indicating that it is required not only to antagonize E-proteins during NK cell commitment, but constantly required to titrate E-protein activity to regulate NK cell fitness and responsiveness to IL-15.


Leukemia | 2016

PU.1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia

Swee Heng Milon Pang; Martina Minnich; Pradnya Gangatirkar; Zhen Zheng; Anja Ebert; Guangchun Song; Ross A. Dickins; Lynn M. Corcoran; Charles G. Mullighan; Meinrad Busslinger; Nicholas D. Huntington; Stephen L. Nutt; Sebastian Carotta

The Ets family transcription factor PU.1 and the interferon regulatory factor (IRF)4 and IRF8 regulate gene expression by binding to composite DNA sequences known as Ets/interferon consensus elements. Although all three factors are expressed from the onset of B-cell development, single deficiency of these factors in B-cell progenitors only mildly impacts on bone marrow B lymphopoiesis. Here we tested whether PU.1 cooperates with IRF factors in regulating early B-cell development. Lack of PU.1 and IRF4 resulted in a partial block in development the pre-B-cell stage. The combined deletion of PU.1 and IRF8 reduced recirculating B-cell numbers. Strikingly, all PU.1/IRF4 and ~50% of PU.1/IRF8 double deficient mice developed pre-B-cell acute lymphoblastic leukemia (B-ALL) associated with reduced expression of the established B-lineage tumor suppressor genes, Ikaros and Spi-B. These genes are directly regulated by PU.1/IRF4/IRF8, and restoration of Ikaros or Spi-B expression inhibited leukemic cell growth. In summary, we demonstrate that PU.1, IRF4 and IRF8 cooperate to regulate early B-cell development and to prevent pre-B-ALL formation.

Collaboration


Dive into the Martina Minnich's collaboration.

Top Co-Authors

Avatar

Meinrad Busslinger

Research Institute of Molecular Pathology

View shared research outputs
Top Co-Authors

Avatar

Stephen L. Nutt

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Gabrielle T. Belz

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Axel Kallies

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Wei Shi

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Elin Axelsson

Research Institute of Molecular Pathology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas D. Huntington

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sebastian Carotta

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Markus Jaritz

Research Institute of Molecular Pathology

View shared research outputs
Researchain Logo
Decentralizing Knowledge