Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Anne Evans is active.

Publication


Featured researches published by Mary Anne Evans.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions

Anna M. Michalak; Eric J. Anderson; Dimitry Beletsky; Steven Boland; Nathan S. Bosch; Thomas B. Bridgeman; Justin D. Chaffin; Kyunghwa Cho; Rem Confesor; Irem Daloğlu; Jospeh DePinto; Mary Anne Evans; Gary L. Fahnenstiel; Lingli He; Jeff C. Ho; Liza K. Jenkins; Thomas H. Johengen; Kevin C Kuo; Elizabeth LaPorte; Xiaojian Liu; Michael McWilliams; Michael R. Moore; Derek J. Posselt; R. Peter Richards; Donald Scavia; Allison L. Steiner; Ed Verhamme; David M. Wright; Melissa A. Zagorski

In 2011, Lake Erie experienced the largest harmful algal bloom in its recorded history, with a peak intensity over three times greater than any previously observed bloom. Here we show that long-term trends in agricultural practices are consistent with increasing phosphorus loading to the western basin of the lake, and that these trends, coupled with meteorological conditions in spring 2011, produced record-breaking nutrient loads. An extended period of weak lake circulation then led to abnormally long residence times that incubated the bloom, and warm and quiescent conditions after bloom onset allowed algae to remain near the top of the water column and prevented flushing of nutrients from the system. We further find that all of these factors are consistent with expected future conditions. If a scientifically guided management plan to mitigate these impacts is not implemented, we can therefore expect this bloom to be a harbinger of future blooms in Lake Erie.


Environmental Science & Technology | 2011

Incidental oligotrophication of North American Great Lakes.

Mary Anne Evans; Gary L. Fahnenstiel; Donald Scavia

Phytoplankton production is an important factor in determining both ecosystem stability and the provision of ecosystem goods and services. The expansive and economically important North American Great Lakes are subjected to multiple stressors and understanding their responses to those stresses is important for understanding system-wide ecological controls. Here we show gradual increases in spring silica concentration (an indicator of decreasing growth of the dominant diatoms) in all basins of Lakes Michigan and Huron (USA and Canadian waters) between 1983 and 2008. These changes indicate the lakes have undergone gradual oligotrophication coincident with and anticipated by nutrient management implementation. Slow declines in seasonal drawdown of silica (proxy for seasonal phytoplankton production) also occurred, until recent years, when lake-wide responses were punctuated by abrupt decreases, putting them in the range of oligotrophic Lake Superior. The timing of these dramatic production drops is coincident with expansion of populations of invasive dreissenid mussels, particularly quagga mussels, in each basin. The combined effect of nutrient mitigation and invasive species expansion demonstrates the challenges facing large-scale ecosystems and suggest the need for new management regimes for large ecosystems.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Increased competition may promote species coexistence

John Vandermeer; Mary Anne Evans; P. Foster; Tomas O. Höök; Matthew A. Wund

It is a mainstay of community ecology that local exclusion of species will result if competitive pressures become too large. The pattern of exclusion may be complicated, but the qualitative orthodoxy has changed little since the pioneering work of Lotka, Volterra, and Gause—no two species can occupy the same niche. Stated in a more precise form, the higher the intensity of interspecific competition in an assemblage of species, the fewer the number of species that can coexist in perpetuity. We suggest that this orthodoxy results from “linear” thinking, and that if the classical equations are formulated more realistically with attendant nonlinearities, the orthodoxy breaks down and higher levels of competition may actually increase the likelihood that species will avoid competitive exclusion. Furthermore, this increased probability of coexistence at higher levels of competition is accompanied by characteristic dynamic patterns: (i) at lower levels of competition, after all extinction events have occurred, remaining species follow irregular chaotic patterns; (ii) at higher levels of competition, when most species coexist, all species are entrained in a single large limit cycle; (iii) the transient behavior appears to correspond to a special case of chaos, uniform phase chaotic amplitude.


Environmental Science & Technology | 2010

Gulf of Mexico Hypoxia: Exploring Increasing Sensitivity to Nitrogen Loads

Yong Liu; Mary Anne Evans; Donald Scavia

Hypoxia is a critical issue in the Gulf of Mexico that has challenged management efforts in recent years by an increase in hypoxia sensitivity to nitrogen loads. Several mechanisms have been proposed to explain the recent increase in sensitivity. Two commonly cited mechanisms are bottom-water reducing conditions preventing nitrification and thus denitrification, leading to more N recycling and production of oxygen-consuming organic matter, and carryover of organic matter from previous years increasing oxygen demand, making the system more sensitive. We use models informed by these mechanisms and fit with Bayesian inference to explore changes in Gulf of Mexico hypoxia sensitivity. We show that a model including an annually fit parameter representing variation in the fraction of nutrient loading and recycling contributing to bottom water oxygen demand provides a good fit to observations and is not improved by explicit inclusion of organic matter carryover to subsequent years. Both models support two stepwise increases in system sensitivity during the period of record. This change in sensitivity has greatly increased the nutrient reduction needed to achieve the established hypoxia goal. If the Gulf remains at the current state of sensitivity, our analysis suggests a roughly 70% reduction of spring TN loads from the 1988-1996 average of 6083 ton/day may be required.


Environmental Science & Technology | 2013

A Scenario and Forecast Model for Gulf of Mexico Hypoxic Area and Volume

Donald Scavia; Mary Anne Evans; Daniel R. Obenour

For almost three decades, the relative size of the hypoxic region on the Louisiana-Texas continental shelf has drawn scientific and policy attention. During that time, both simple and complex models have been used to explore hypoxia dynamics and to provide management guidance relating the size of the hypoxic zone to key drivers. Throughout much of that development, analyses had to accommodate an apparent change in hypoxic sensitivity to loads and often cull observations due to anomalous meteorological conditions. Here, we describe an adaptation of our earlier, simple biophysical model, calibrated to revised hypoxic area estimates and new hypoxic volume estimates through Bayesian estimation. This application eliminates the need to cull observations and provides revised hypoxic extent estimates with uncertainties corresponding to different nutrient loading reduction scenarios. We compare guidance from this model application, suggesting an approximately 62% nutrient loading reduction is required to reduce Gulf hypoxia to the Action Plan goal of 5000 km(2), to that of previous applications. In addition, we describe for the first time, the corresponding response of hypoxic volume. We also analyze model results to test for increasing system sensitivity to hypoxia formation, but find no strong evidence of such change.


Environmental Research Letters | 2011

Forecasting hypoxia in the Chesapeake Bay and Gulf of Mexico: model accuracy, precision, and sensitivity to ecosystem change

Mary Anne Evans; Donald Scavia

Increasing use of ecological models for management and policy requires robust evaluation of model precision, accuracy, and sensitivity to ecosystem change. We conducted such an evaluation of hypoxia models for the northern Gulf of Mexico and Chesapeake Bay using hindcasts of historical data, comparing several approaches to model calibration. For both systems we find that model sensitivity and precision can be optimized and model accuracy maintained within reasonable bounds by calibrating the model to relatively short, recent 3 year datasets. Model accuracy was higher for Chesapeake Bay than for the Gulf of Mexico, potentially indicating the greater importance of unmodeled processes in the latter system. Retrospective analyses demonstrate both directional and variable changes in sensitivity of hypoxia to nutrient loads.


Canadian Journal of Fisheries and Aquatic Sciences | 2010

Direct and indirect effects of fish on pelagic nitrogen and phosphorus availability in oligotrophic Arctic Alaskan lakes

Cody R. Johnson; ChrisLueckeC. Luecke; Stephen C. Whalen; Mary Anne Evans

The importance of fish nutrient recycling for lake primary production increases with lake productivity. However, fish in low-productivity lakes may have substantial indirect effects on nutrient recycling from lower trophic levels. We measured nutrient excretion rates from fish and zooplankton in oligotrophic Arctic lakes and investigated direct and indirect fish effects on consumer nutrient recycling. Fish nutrient excretion rates were small relative to phytoplankton nutrient demand. Zooplankton excretion, however, supplied 19%–130% and 37%–200% of phytoplankton nitrogen and phosphorus demand, respectively. Fish had a significant effect on zooplankton biomass; in lakes with fish, this was approximately 80% lower than in lakes without fish. The difference in zooplankton biomass was due primarily to a decrease in zooplankton density; no significant difference in average zooplankton size was observed between fish and fishless lakes. Fish also impacted zooplankton community composition; communities in lakes w...


Ecological Applications | 2015

Measuring spatial variation in secondary production and food quality using a common consumer approach in Lake Erie

James H. Larson; William B. Richardson; Mary Anne Evans; Jeff Schaeffer; Timothy T. Wynne; Michelle R. Bartsch; Lynn A. Bartsch; J. C. Nelson; Jon M. Vallazza

Lake Erie is a large lake straddling the border of the USA and Canada that has become increasingly eutrophic in recent years. Eutrophication is particularly focused in the shallow western basin. The western basin of Lake Erie is hydrodynamically similar to a large estuary, with riverine inputs from the Detroit and Maumee Rivers mixing together and creating gradients in chemical and physical conditions. This study was driven by two questions: (1) How does secondary production and food quality for consumers vary across this large mixing zone? and (2) Are there correlations between cyanobacterial abundance and secondary production or food quality for consumers? Measuring spatial and temporal variation in secondary production and food quality is difficult for a variety of logistical reasons, so here a common consumer approach was used. In a common consumer approach, individuals of a single species are raised under similar conditions until placed in the field across environmental gradients of interest. After some period of exposure, the response of that common consumer is measured to provide an index of spatial variation in conditions. Here, a freshwater mussel (Lampsilis siliquoidea) was deployed at 32 locations that spanned habitat types and a gradient in cyanobacterial abundance in the western basin of Lake Erie to measure spatial variation in growth (an index of secondary production) and fatty acid (FA) content (an index of food quality). We found secondary production was highest within the Maumee river mouth and lowest in the open waters of the lake. Mussel tissues in the Maumee river mouth also included more eicosapentaenoic and docosapentaenoic fatty acids (EPA and DPA, respectively), but fewer bacterial FAs, suggesting more algae at the base of the food web in the Maumee river mouth compared to open lake sites. The satellite-derived estimate of cyanobacterial abundance was not correlated to secondary production, but was positively related to EPA and DPA content in the mussels, suggesting more of these important FAs in locations with more cyanobacteria. These results suggest that growth of secondary consumers and the availability of important fatty acids in the western basin are centered on the Maumee river mouth.


Fisheries | 2016

Graphical Function Mapping as a New Way to Explore Cause-and-Effect Chains

Mary Anne Evans

Graphical function mapping provides a simple method for improving communication within interdisciplinary research teams and between scientists and nonscientists. This article introduces graphical function mapping using two examples and discusses its usefulness. Function mapping projects the outcome of one function into another to show the combined effect. Using this mathematical property in a simpler, even cartoon-like, graphical way allows the rapid combination of multiple information sources (models, empirical data, expert judgment, and guesses) in an intuitive visual to promote further discussion, scenario development, and clear communication.


Journal of Great Lakes Research | 2014

Assessing and addressing the re-eutrophication of Lake Erie: Central basin hypoxia

Donald Scavia; J. David Allan; Kristin K. Arend; Steven M. Bartell; Dmitry Beletsky; Nate S. Bosch; Stephen B. Brandt; Ruth D. Briland; Irem Daloğlu; Joseph V. DePinto; David M. Dolan; Mary Anne Evans; Troy M. Farmer; Daisuke Goto; Haejin Han; Tomas O. Höök; Roger L. Knight; Stuart A. Ludsin; Doran M. Mason; Anna M. Michalak; R. Peter Richards; James J. Roberts; Daniel K. Rucinski; Edward S. Rutherford; David J. Schwab; Timothy M. Sesterhenn; Hongyan Zhang; Yuntao Zhou

Collaboration


Dive into the Mary Anne Evans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. C. Nelson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James H. Larson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

William B. Richardson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Anna M. Michalak

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Gary L. Fahnenstiel

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge