Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Kay Lobo is active.

Publication


Featured researches published by Mary Kay Lobo.


Science | 2010

Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward.

Mary Kay Lobo; Herbert E. Covington; Dipesh Chaudhury; Allyson K. Friedman; HaoSheng Sun; Diane Damez-Werno; David M. Dietz; Samir Zaman; Ja Wook Koo; Pamela J. Kennedy; Ezekiell Mouzon; Murtaza Mogri; Rachael L. Neve; Karl Deisseroth; Ming-Hu Han; Eric J. Nestler

BDNF, Dopamine, and Cocaine Reward The nucleus accumbens plays a crucial role in mediating the rewarding effects of drugs of abuse. Different subpopulations of nucleus accumbens projection neurons exhibit balanced but antagonistic influences on their downstream outputs and behaviors. However, their roles in regulating reward behaviors remains unclear. Lobo et al. (p. 385) evaluated the roles of the two subtypes of nucleus accumbens projection neurons, those expressing dopamine D1 versus D2 receptors, in cocaine reward. Deleting TrkB, the receptor for brain-derived neurotrophic factor, selectively in each cell type, and selectively controlling the firing of each cell type using optogenetic techniques allowed for confirmation that D1- and D2-containing neurons produced opposite effects on cocaine reward. Selective manipulation of neuron subtypes produces opposite effects on behavioral responses to cocaine. The nucleus accumbens is a key mediator of cocaine reward, but the distinct roles of the two subpopulations of nucleus accumbens projection neurons, those expressing dopamine D1 versus D2 receptors, are poorly understood. We show that deletion of TrkB, the brain-derived neurotrophic factor (BDNF) receptor, selectively from D1+ or D2+ neurons oppositely affects cocaine reward. Because loss of TrkB in D2+ neurons increases their neuronal excitability, we next used optogenetic tools to control selectively the firing rate of D1+ and D2+ nucleus accumbens neurons and studied consequent effects on cocaine reward. Activation of D2+ neurons, mimicking the loss of TrkB, suppresses cocaine reward, with opposite effects induced by activation of D1+ neurons. These results provide insight into the molecular control of D1+ and D2+ neuronal activity as well as the circuit-level contribution of these cell types to cocaine reward.


Nature Neuroscience | 2012

Impaired adult myelination in the prefrontal cortex of socially isolated mice

Jia Liu; Karen Dietz; Jacqueline M DeLoyht; Xiomara Pedre; Dipti Kelkar; Jasbir Kaur; Vincent Vialou; Mary Kay Lobo; David M. Dietz; Eric J. Nestler; Jeffrey L. Dupree; Patrizia Casaccia

Protracted social isolation of adult mice induced behavioral, transcriptional and ultrastructural changes in oligodendrocytes of the prefrontal cortex (PFC) and impaired adult myelination. Social re-integration was sufficient to normalize behavioral and transcriptional changes. Short periods of isolation affected chromatin and myelin, but did not induce behavioral changes. Thus, myelinating oligodendrocytes in the adult PFC respond to social interaction with chromatin changes, suggesting that myelination acts as a form of adult plasticity.


Current Opinion in Neurobiology | 2013

Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways)

Rachel J. Smith; Mary Kay Lobo; Sade Spencer; Peter W. Kalivas

Cocaine exposure causes enduring neuroadaptations in ventral striatum, or nucleus accumbens (NAc), an area critically involved in reward learning and relapse of drug seeking. Medium spiny neurons (MSNs) in striatum are dichotomous in their expression of either D1 or D2 dopamine receptors, along with other receptors and neuropeptides. In dorsal striatum, these two subpopulations show non-overlapping innervation of distinct terminal fields via the direct or indirect pathways. However, NAc D1-MSNs and D2-MSNs are not fully segregated in this manner, with both cell types innervating ventral pallidum. Recent studies show that D1-MSNs and D2-MSNs play opposing roles in cocaine-associated behaviors. Further, cocaine induces differential adaptations in these two subpopulations in NAc, including changes to synaptic plasticity, glutamatergic signaling, and spine morphology.


Nature Neuroscience | 2015

Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections

Yonatan M. Kupchik; Robyn M. Brown; Jasper A. Heinsbroek; Mary Kay Lobo; Danielle Joy Schwartz; Peter W. Kalivas

It is widely accepted that D1 dopamine receptor–expressing striatal neurons convey their information directly to the output nuclei of the basal ganglia, whereas D2-expressing neurons do so indirectly via pallidal neurons. Combining optogenetics and electrophysiology, we found that this architecture does not apply to mouse nucleus accumbens projections to the ventral pallidum. Thus, current thinking attributing D1 and D2 selectivity to accumbens projections akin to dorsal striatal pathways needs to be reconsidered.


The Journal of Neuroscience | 2013

ΔFosB Induction in Striatal Medium Spiny Neuron Subtypes in Response to Chronic Pharmacological, Emotional, and Optogenetic Stimuli

Mary Kay Lobo; Samir Zaman; Diane Damez-Werno; Ja Wook Koo; Rosemary C. Bagot; Jennifer A. DiNieri; Alexandria L. Nugent; Eric Finkel; Dipesh Chaudhury; Ramesh Chandra; Efrain Riberio; Jacqui Rabkin; Ezekiell Mouzon; Roger Cachope; Joseph F. Cheer; Ming-Hu Han; David M. Dietz; David W. Self; Yasmin L. Hurd; Vincent Vialou; Eric J. Nestler

The transcription factor, ΔFosB, is robustly and persistently induced in striatum by several chronic stimuli, such as drugs of abuse, antipsychotic drugs, natural rewards, and stress. However, very few studies have examined the degree of ΔFosB induction in the two striatal medium spiny neuron (MSN) subtypes. We make use of fluorescent reporter BAC transgenic mice to evaluate induction of ΔFosB in dopamine receptor 1 (D1) enriched and dopamine receptor 2 (D2) enriched MSNs in ventral striatum, nucleus accumbens (NAc) shell and core, and in dorsal striatum (dStr) after chronic exposure to several drugs of abuse including cocaine, ethanol, Δ(9)-tetrahydrocannabinol, and opiates; the antipsychotic drug, haloperidol; juvenile enrichment; sucrose drinking; calorie restriction; the serotonin selective reuptake inhibitor antidepressant, fluoxetine; and social defeat stress. Our findings demonstrate that chronic exposure to many stimuli induces ΔFosB in an MSN-subtype selective pattern across all three striatal regions. To explore the circuit-mediated induction of ΔFosB in striatum, we use optogenetics to enhance activity in limbic brain regions that send synaptic inputs to NAc; these regions include the ventral tegmental area and several glutamatergic afferent regions: medial prefrontal cortex, amygdala, and ventral hippocampus. These optogenetic conditions lead to highly distinct patterns of ΔFosB induction in MSN subtypes in NAc core and shell. Together, these findings establish selective patterns of ΔFosB induction in striatal MSN subtypes in response to chronic stimuli and provide novel insight into the circuit-level mechanisms of ΔFosB induction in striatum.


Science | 2012

BDNF Is a Negative Modulator of Morphine Action

Ja Wook Koo; Michelle S. Mazei-Robison; Dipesh Chaudhury; Barbara Juarez; Quincey LaPlant; Deveroux Ferguson; Jian Feng; HaoSheng Sun; Kimberly N. Scobie; Diane Damez-Werno; Marshall Crumiller; Yoshinori N. Ohnishi; Yoko H. Ohnishi; Ezekiell Mouzon; David M. Dietz; Mary Kay Lobo; Rachael L. Neve; Scott J. Russo; Ming-Hu Han; Eric J. Nestler

Regulating Opioid Responses Different drugs of abuse are thought to highjack similar reward systems in the brain using common mechanisms. However, Koo et al. (p. 124) now observe that some of the neural mechanisms that regulate opiate reward can be both different and even opposite to those that regulate reward by stimulant drugs. While knockdown of brain-derived neurotrophic factor (BDNF) in the ventral tegmental area in mice antagonized the response to cocaine, the same manipulation strengthened the potential of opiates to increase dopamine neuron excitability. Optogenetic stimulation of dopaminergic terminals in the nucleus accumbens could counteract the effects of BDNF on morphine reward blockade. Morphine reward is modulated by ventral tegmental area brain-derived neurotrophic factor in a way that is opposite to its modulation of cocaine reward. Brain-derived neurotrophic factor (BDNF) is a key positive regulator of neural plasticity, promoting, for example, the actions of stimulant drugs of abuse such as cocaine. We discovered a surprising opposite role for BDNF in countering responses to chronic morphine exposure. The suppression of BDNF in the ventral tegmental area (VTA) enhanced the ability of morphine to increase dopamine (DA) neuron excitability and promote reward. In contrast, optical stimulation of VTA DA terminals in nucleus accumbens (NAc) completely reversed the suppressive effect of BDNF on morphine reward. Furthermore, we identified numerous genes in the NAc, a major target region of VTA DA neurons, whose regulation by BDNF in the context of chronic morphine exposure mediated this counteractive function. These findings provide insight into the molecular basis of morphine-induced neuroadaptations in the brain’s reward circuitry.


Biological Psychiatry | 2015

Nucleus Accumbens Medium Spiny Neuron Subtypes Mediate Depression-Related Outcomes to Social Defeat Stress

T. Chase Francis; Ramesh Chandra; Danielle M. Friend; Eric Finkel; Genesis Dayrit; Jorge Miranda; Julie M. Brooks; Sergio D. Iñiguez; Patricio O’Donnell; Alexxai V. Kravitz; Mary Kay Lobo

BACKGROUND The nucleus accumbens is a critical mediator of depression-related outcomes to social defeat stress. Previous studies demonstrate distinct neuroplasticity adaptations in the two medium spiny neuron (MSN) subtypes, those enriched in dopamine receptor D1 versus dopamine receptor D2, in reward and reinforcement leading to opposing roles for these MSNs in these behaviors. However, the distinct roles of nucleus accumbens MSN subtypes, in depression, remain poorly understood. METHODS Using whole-cell patch clamp electrophysiology, we examined excitatory input to MSN subtypes and intrinsic excitability measures in D1-green fluorescent protein and D2-green fluorescent protein bacterial artificial chromosome transgenic mice that underwent chronic social defeat stress (CSDS). Optogenetic and pharmacogenetic approaches were used to bidirectionally alter firing of D1-MSNs or D2-MSNs after CSDS or before a subthreshold social defeat stress in D1-Cre or D2-Cre bacterial artificial chromosome transgenic mice. RESULTS We demonstrate that the frequency of excitatory synaptic input is decreased in D1-MSNs and increased in D2-MSNs in mice displaying depression-like behaviors after CSDS. Enhancing activity in D1-MSNs results in resilient behavioral outcomes, while inhibition of these MSNs induces depression-like outcomes after CSDS. Bidirectional modulation of D2-MSNs does not alter behavioral responses to CSDS; however, repeated activation of D2-MSNs in stress naïve mice induces social avoidance following subthreshold social defeat stress. CONCLUSIONS Our studies uncover novel functions of MSN subtypes in depression-like outcomes. Notably, bidirectional alteration of D1-MSN activity promotes opposite behavioral outcomes to chronic social stress. Therefore, targeting D1-MSN activity may provide novel treatment strategies for depression or other affective disorders.


The Journal of Neuroscience | 2013

New Insights into the Specificity and Plasticity of Reward and Aversion Encoding in the Mesolimbic System

Susan F. Volman; Stephan Lammel; Elyssa B. Margolis; Yunbok Kim; Jocelyn M. Richard; Mitchell F. Roitman; Mary Kay Lobo

The mesocorticolimbic system, consisting, at its core, of the ventral tegmental area, the nucleus accumbens, and medial prefrontal cortex, has historically been investigated primarily for its role in positively motivated behaviors and reinforcement learning, and its dysfunction in addiction, schizophrenia, depression, and other mood disorders. Recently, researchers have undertaken a more comprehensive analysis of this system, including its role in not only reward but also punishment, as well as in both positive and negative reinforcement. This focus has been facilitated by new anatomical, physiological, and behavioral approaches to delineate functional circuits underlying behaviors and to determine how this system flexibly encodes and responds to positive and negative states and events, beyond simple associative learning. This review is a summary of topics covered in a mini-symposium at the 2013 Society for Neuroscience annual meeting.


Behavioural Brain Research | 2013

Optogenetic insights into striatal function and behavior

Jeffrey D. Lenz; Mary Kay Lobo

Recent breakthroughs in optogenetic technologies to alter neuronal firing and function with light, combined with cell type-specific transgenic animal lines, has led to important insights into the function of distinct neuronal cell subtypes and afferent connections in the heterogeneously complex striatum. A vital part of the basal ganglia, the striatum is heavily implicated in both motor control and motivation-based behavior; as well as in neurological disorders and psychiatric diseases including Parkinsons Disease, Huntingtons Disease, drug addiction, depression, and schizophrenia. Researchers are able to manipulate firing and cell signaling with temporal precision using optogenetics in the two striatal medium spiny neuron (MSN) subpopulations, the striatal interneurons, and striatal afferents. These studies confirmed the classical hypothesis of movement control and reward seeking behavior through direct versus indirect pathway MSNs; illuminated a selective role for TANs in cocaine reward; dissected the roles of glutamatergic and dopaminergic inputs to striatum in reward; and highlighted a role for striatal signaling molecules including an adrenergic G-protein coupled receptor in reward and the rho-GTPase Rac1 in cocaine reward and cocaine induced structural plasticity. This review focuses on how the evolving optogenetic toolbox provides insight into the distinct behavioral roles of striatal cell subpopulations and striatal afferents, which has clinically relevant implications into neurological disorders and psychiatric disease.


Nature Neuroscience | 2015

Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area

Ja Wook Koo; Michelle S. Mazei-Robison; Quincey LaPlant; Gabor Egervari; Kevin M Braunscheidel; Danielle N. Adank; Deveroux Ferguson; Jian Feng; HaoSheng Sun; Kimberly N. Scobie; Diane Damez-Werno; Efrain Ribeiro; Catherine J. Peña; Deena M. Walker; Rosemary C. Bagot; Michael E. Cahill; Sarah Ann R Anderson; Benoit Labonté; Georgia E. Hodes; Heidi A. Browne; Benjamin Chadwick; Alfred J. Robison; Vincent Vialou; Caroline Dias; Zachary S. Lorsch; Ezekiell Mouzon; Mary Kay Lobo; David M. Dietz; Scott J. Russo; Rachael L. Neve

Brain-derived neurotrophic factor (BDNF) has a crucial role in modulating neural and behavioral plasticity to drugs of abuse. We found a persistent downregulation of exon-specific Bdnf expression in the ventral tegmental area (VTA) in response to chronic opiate exposure, which was mediated by specific epigenetic modifications at the corresponding Bdnf gene promoters. Exposure to chronic morphine increased stalling of RNA polymerase II at these Bdnf promoters in VTA and altered permissive and repressive histone modifications and occupancy of their regulatory proteins at the specific promoters. Furthermore, we found that morphine suppressed binding of phospho-CREB (cAMP response element binding protein) to Bdnf promoters in VTA, which resulted from enrichment of trimethylated H3K27 at the promoters, and that decreased NURR1 (nuclear receptor related-1) expression also contributed to Bdnf repression and associated behavioral plasticity to morphine. Our findings suggest previously unknown epigenetic mechanisms of morphine-induced molecular and behavioral neuroadaptations.

Collaboration


Dive into the Mary Kay Lobo's collaboration.

Top Co-Authors

Avatar

Eric J. Nestler

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dipesh Chaudhury

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming-Hu Han

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Rachael L. Neve

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ezekiell Mouzon

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

HaoSheng Sun

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge