Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maryline Raimond is active.

Publication


Featured researches published by Maryline Raimond.


Applied and Environmental Microbiology | 2007

Molecular characterization and evolution of arthropod-pathogenic Rickettsiella bacteria

Richard Cordaux; Mélanie Paces-Fessy; Maryline Raimond; Alice Michel-Salzat; Martin Zimmer; Didier Bouchon

ABSTRACT We determined the 16S rRNA gene sequences of three crustacean “Rickettsiella armadillidii” strains. Rickettsiella bacteria overall appear to form a monophyletic group that diverged from Coxiella bacteria ∼350 million years ago. Therefore, the genus Rickettsiella as a whole (not just Rickettsiella grylli) should be classified among the Gammaproteobacteria instead of the Alphaproteobacteria.


PLOS Pathogens | 2012

High Virulence of Wolbachia after Host Switching: When Autophagy Hurts

Winka Le Clec'h; Christine Braquart-Varnier; Maryline Raimond; Jean-Baptiste Ferdy; Didier Bouchon; Mathieu Sicard

Wolbachia are widespread endosymbionts found in a large variety of arthropods. While these bacteria are generally transmitted vertically and exhibit weak virulence in their native hosts, a growing number of studies suggests that horizontal transfers of Wolbachia to new host species also occur frequently in nature. In transfer situations, virulence variations can be predicted since hosts and symbionts are not adapted to each other. Here, we describe a situation where a Wolbachia strain (wVulC) becomes a pathogen when transfected from its native terrestrial isopod host species (Armadillidium vulgare) to another species (Porcellio d. dilatatus). Such transfer of wVulC kills all recipient animals within 75 days. Before death, animals suffer symptoms such as growth slowdown and nervous system disorders. Neither those symptoms nor mortalities were observed after injection of wVulC into its native host A. vulgare. Analyses of wVulCs densities in main organs including Central Nervous System (CNS) of both naturally infected A. vulgare and transfected P. d. dilatatus and A. vulgare individuals revealed a similar pattern of host colonization suggesting an overall similar resistance of both host species towards this bacterium. However, for only P. d. dilatatus, we observed drastic accumulations of autophagic vesicles and vacuoles in the nerve cells and adipocytes of the CNS from individuals infected by wVulC. The symptoms and mortalities could therefore be explained by this huge autophagic response against wVulC in P. d. dilatatus cells that is not triggered in A. vulgare. Our results show that Wolbachia (wVulC) can lead to a pathogenic interaction when transferred horizontally into species that are phylogenetically close to their native hosts. This change in virulence likely results from the autophagic response of the host, strongly altering its tolerance to the symbiont and turning it into a deadly pathogen.


PLOS ONE | 2011

The Immune Cellular Effectors of Terrestrial Isopod Armadillidium vulgare: Meeting with Their Invaders, Wolbachia

Frédéric Chevalier; Juline Herbinière-Gaboreau; Joanne Bertaux; Maryline Raimond; Franck Morel; Didier Bouchon; Pierre Grève; Christine Braquart-Varnier

Background Most of crustacean immune responses are well described for the aquatic forms whereas almost nothing is known for the isopods that evolved a terrestrial lifestyle. The latter are also infected at a high prevalence with Wolbachia, an endosymbiotic bacterium which affects the host immune system, possibly to improve its transmission. In contrast with insect models, the isopod Armadillidium vulgare is known to harbor Wolbachia inside the haemocytes. Methodology/Principal Findings In A. vulgare we characterized three haemocyte types (TEM, flow cytometry): the hyaline and semi-granular haemocytes were phagocytes, while semi-granular and granular haemocytes performed encapsulation. They were produced in the haematopoietic organs, from central stem cells, maturing as they moved toward the edge (TEM). In infected individuals, live Wolbachia (FISH) colonized 38% of the haemocytes but with low, variable densities (6.45±0.46 Wolbachia on average). So far they were not found in hyaline haemocytes (TEM). The haematopoietic organs contained 7.6±0.7×103 Wolbachia, both in stem cells and differentiating cells (FISH). While infected and uninfected one-year-old individuals had the same haemocyte density, in infected animals the proportion of granular haemocytes in particular decreased by one third (flow cytometry, Pearsons test = 12 822.98, df = 2, p<0.001). Conclusions/Significance The characteristics of the isopod immune system fell within the range of those known from aquatic crustaceans. The colonization of the haemocytes by Wolbachia seemed to stand from the haematopoietic organs, which may act as a reservoir to discharge Wolbachia in the haemolymph, a known route for horizontal transfer. Wolbachia infection did not affect the haemocyte density, but the quantity of granular haemocytes decreased by one third. This may account for the reduced prophenoloxidase activity observed previously in these animals.


PLOS ONE | 2014

Wolbachia infect ovaries in the course of their maturation: last minute passengers and priority travellers?

Lise-Marie Genty; Didier Bouchon; Maryline Raimond; Joanne Bertaux

Wolbachia are widespread endosymbiotic bacteria of arthropods and nematodes. Studies on such models suggest that Wolbachias remarkable aptitude to infect offspring may rely on a re-infection of ovaries from somatic tissues instead of direct cellular segregation between oogonia and oocytes. In the terrestrial isopod Armadillidium vulgare, Wolbachia are vertically transmitted to the host offspring, even though ovary cells are cyclically renewed. Using Fluorescence in situ hybridization (FISH), we showed that the proportion of infected oocytes increased in the course of ovary and oocyte maturation, starting with 31.5% of infected oocytes only. At the end of ovary maturation, this proportion reached 87.6% for the most mature oocytes, which is close to the known transmission rate to offspring. This enrichment can be explained by a secondary acquisition of the bacteria by oocytes (Wolbachia can be seen as last minute passengers) and/or by a preferential selection of oocytes infected with Wolbachia (as priority travellers).


Environmental Microbiology | 2013

Horizontal transfers of feminizing versus non-feminizing Wolbachia strains: from harmless passengers to pathogens.

Winka Le Clec'h; Maryline Raimond; Sylvain Guillot; Didier Bouchon; Mathieu Sicard

The endosymbiont Wolbachia pipientis infects various hosts in which it navigates vertically from mothers to offspring. However, horizontal transfers of Wolbachia can occur between hosts. The virulence of the horizontally acquired Wolbachia can change in the new host as it has been illustrated by the case of the feminizing strain wVulC from the woodlouse Armadillidium vulgare that turns to a pathogen when introduced into Porcellio dilatatus dilatatus. In the present study, we aim to show whether symbiotic traits, such as (i) host sex manipulation and (ii) colonization patterns, which differ between eight isopod Wolbachia strains, are connected to their virulence towards the recipient host P. d. dilatatus. Among the transferred Wolbachia, some feminizing strains gradually differing in feminizing intensity in their native hosts induced different levels of pathogenicity to P. d. dilatatus. Not a single feminizing strain passed vertically with high titres to the next generation. The non-feminizing Wolbachia strains, even if they reached high densities in the host, did not impact host life-history traits and some vertically passed with high titres to the offspring. These results suggest that a potential link between the manners Wolbachia manipulates its native host reproduction, its virulence and its ability to vertically infect the offspring.


Journal of Invertebrate Pathology | 2008

Pathogenic effect of entomopathogenic nematode–bacterium complexes on terrestrial isopods

Mathieu Sicard; Maryline Raimond; Olivier Prats; Alexandra Lafitte; Christine Braquart-Varnier

In this study, we evaluated the effect of entomopathogenic nematodes (EPNs) Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora, symbiotically associated with bacteria of the genera Xenorhabdus or Photorhabdus, on the survival of eight terrestrial isopod species. The EPN species S. carpocapsae and H. bacteriophora reduced the survival of six isopod species while S. feltiae reduced survival for two species. Two terrestrial isopod species tested (Armadillidium vulgare and Armadillo officinalis) were found not to be affected by treatment with EPNs while the six other isopod species showed survival reduction with at least one EPN species. By using aposymbiotic S. carpocapsae (i.e. without Xenorhabdus symbionts), we showed that nematodes can be isopod pathogens on their own. Nevertheless, symbiotic nematodes were more pathogenic for isopods than aposymbiotic ones showing that bacteria acted synergistically with their nematodes to kill isopods. By direct injection of entomopathogenic bacteria into isopod hemolymph, we showed that bacteria had a pathogenic effect on terrestrial isopods even if they appeared unable to multiply within isopod hemolymphs. A developmental study of EPNs in isopods showed that two of them (S. carpocapsae and H. bacteriophora) were able to develop while S. feltiae could not. No EPN species were able to produce offspring emerging from isopods. We conclude that EPN and their bacteria can be pathogens for terrestrial isopods but that such hosts represent a reproductive dead-end for them. Thus, terrestrial isopods appear not to be alternative hosts for EPN populations maintained in the absence of insects.


Journal of Invertebrate Pathology | 2015

Effect of experimental exposure to differently virulent Aphanomyces astaci strains on the immune response of the noble crayfish Astacus astacus.

Thomas Becking; Agata Mrugała; Carine Delaunay; Jiří Svoboda; Maryline Raimond; Satu Viljamaa-Dirks; Adam Petrusek; Frédéric Grandjean; Christine Braquart-Varnier

European crayfish are sensitive to the crayfish plague pathogen, Aphanomyces astaci, carried by North American crayfish species due to their less effective immune defence mechanisms against this disease. During a controlled infection experiment with a susceptible crayfish species Astacus astacus using three A. astaci strains (representing genotype groups A, B, and E), we investigated variation in their virulence and in crayfish immune defence indicators (haemocyte density, phenoloxidase activity, and production of reactive oxygen species). Experimental crayfish were exposed to two dosages of A. astaci spores (1 and 10 spores mL(-1)). The intensity and timing of the immune response differed between the strains as well as between the spore concentrations. Stronger and faster change in each immune parameter was observed in crayfish infected with two more virulent strains, indicating a relationship between crayfish immune response and A. astaci virulence. Similarly, the immune response was stronger and was observed earlier for the higher spore concentration. For the first time, the virulence of a strain of the genotype group E (isolated from Orconectes limosus) was experimentally tested. Total mortality was reached after 10 days for the two higher spore dosages (10 and 100 spores mL(-1)), and after 16 days for the lowest (1 spore mL(-1)), revealing equally high and rapid mortality as caused by the genotype group B (from Pacifastacus leniusculus). No mortality occurred after infection with genotype group A during 60 days of the experimental trial.


Scientific Reports | 2017

Diversity and evolution of sex determination systems in terrestrial isopods

Thomas Becking; Isabelle Giraud; Maryline Raimond; Bouziane Moumen; Christopher H. Chandler; Richard Cordaux; Clément Gilbert

Sex determination systems are highly variable in many taxa, sometimes even between closely related species. Yet the number and direction of transitions between these systems have seldom been characterized, and the underlying mechanisms are still poorly understood. Here we generated transcriptomes for 19 species of terrestrial isopod crustaceans, many of which are infected by Wolbachia bacterial endosymbionts. Using 88 single-copy orthologous genes, we reconstructed a fully resolved and dated phylogeny of terrestrial isopods. An original approach involving crossings of sex-reversed individuals allowed us to characterize the heterogametic systems of five species (one XY/XX and four ZW/ZZ). Mapping of these and previously known heterogametic systems onto the terrestrial isopod phylogeny revealed between 3 and 13 transitions of sex determination systems during the evolution of these taxa, most frequently from female to male heterogamety. Our results support that WW individuals are viable in many species, suggesting sex chromosomes are at an incipient stage of their evolution. Together, these data are consistent with the hypothesis that nucleo-cytoplasmic conflicts generated by Wolbachia endosymbionts triggered recurrent turnovers of sex determination systems in terrestrial isopods. They further establish terrestrial isopods as a model to study evolutionary transitions in sex determination systems and pave the way to molecularly characterize these systems.


Journal of Structural Biology | 2016

Hierarchical organization of the cuticle of the subsocial desert isopod, Hemilepistus reaumurii

Anas Ayari; Maryline Raimond; Catherine Souty-Grosset; Karima Nasri-Ammar

The crustacean cuticle is a hierarchically organised material which provides protection and sites for muscle attachment. The physical properties of this exoskeleton envelope are adapted to the function and the eco-physiological requirements of the species. This paper aimed to study, using the TEM, the structure of the tubercle and the tergite cuticle of the arid species Hemilepistus reaumurii in a comparison with a subhumid isopod in order to relate some peculiar features to an adaptive process to environmental constraints. Results showed that wild H. reaumurii cuticles were twice as thick in comparison with Porcellio variabilis which is a subhumid zone isopod. It is suggested therefore that the thick cuticle of wild H. reaumurii can be an adaptation to terrestrial life and a protection against osmotic stress and water loss in an arid environment. In addition the inside of the tubercle showed a high number of lipid droplets stacked into an adipose tissue which suggest that tubercles were used for storage for nutritive material in wild H. reaumurii.


Developmental and Comparative Immunology | 2008

Protein profiling of hemocytes from the terrestrial crustacean Armadillidium vulgare

Juline Herbinière; Pierre Grève; Jean-Marc Strub; Danièle Thiersé; Maryline Raimond; Alain Van Dorsselaer; Gilbert Martin; Christine Braquart-Varnier

To establish and maintain a successful infection, microbial pathogens have evolved various strategies to infect the host in the face of a functional immune system. In this context, the alpha-proteobacteria Wolbachia capacities to infect new host species have been greatly evidenced. Indeed, in terrestrial isopods, experimentally transferred Wolbachia invade all host tissues, including immune cells such as hemocytes. To investigate mechanisms that have to be avoided by bacteria to maintain themselves in hemocytes, we characterized the hemocyte proteome of Armadillidium vulgare by a 2D gel electrophoresis approach. Fifty-six proteins were identified and classified into functional groups (stress and immunity, glucose metabolisms, cytoskeleton, others). We focused on immune response and cytoskeleton proteins often exploited by bacteria to invade their host. From the microsequences obtained by mass spectrometry, PCR primers were designed to amplify seven partial cDNAs encoding masquerade, alpha2-macroglobulin, transglutaminase, MnSOD, calreticulin, cyclophilin, and vinculin, confirming their expression in hemocytes.

Collaboration


Dive into the Maryline Raimond's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathieu Sicard

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge