Masaaki Takayanagi
Toho University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Masaaki Takayanagi.
Brain Behavior and Evolution | 1998
Sachiko Kakuta; Satoko Oda; Masaaki Takayanagi; Kiyoshi Kishi
The distribution, morphological features, and postnatal development of parvalbumin (PV) immunoreactive neurons in the main olfactory bulb (MOB) of the house musk shrew, Suncus murinus, were studied to report for the first time on PV positive bulbar interneurons in the order Insectivora. In adult animals, PV neurons are distributed in the glomerular layer (GL), the external plexiform layer (EPL), the internal plexiform layer (IPL) and the granule cell layer (GCL) of the MOB. These neurons were identified as a subpopulation of periglomerular cells and perinidal cells [Alonso et al., 1995] in the GL and at the GL-EPL border, respectively, and as bipolar and multipolar neurons in the EPL and four types of the interneurons (horizontal cells, Cajal cells, Golgi cells, and bitufted cells) in the layers deeper than the mitral cell layer. During development of PV neurons, neurons exhibiting extremely faint PV immunoreactivity first appeared in the GCL at postnatal day 14 and increased markedly in number and intensity of their PV immunoreactivity from postnatal days 14 to 28. At postnatal day 21, PV neurons were identified as periglomerular cells in the GL, perinidal cells at the GL-EPL border, and morphologically unidentifiable neurons in the EPL, IPL and GCL. At postnatal day 28, PV neurons exhibited a nearly adult pattern with respect to distribution and structural features. The present results strongly suggest that a wide variety of PV positive neurons in the MOB of the house musk shrew may develop postnatally.
Anatomia Histologia Embryologia | 2012
S. Yoshitomi; Tomokazu Kawashima; Kunio Murakami; Masaaki Takayanagi; Y. Inoue; R. Aoyagi; Fumi Sato
The anatomy of the brachial plexus in the common hippopotamus (Hippopotamus amphibius), which has not been previously reported, was first examined bilaterally in a newborn hippopotamus. Our observations clarified the following: (1) the brachial plexus comprises the fifth cervical (C5) to first thoracic (T1) nerves. These formed two trunks, C5–C6 and C7–T1; in addition, the axillary artery passed in between C6 and C7, (2) unique branches to the brachialis muscle and those of the lateral cutaneous antebrachii nerves ramified from the median nerve, (3) nerve fibre analysis revealed that these unique nerve branches from the median nerve were closely related and structurally similar to the musculocutaneous (MC) nerve; however, they had changed course from the MC to the median nerve, and (4) this unique branching pattern is likely to be a common morphological feature of the brachial plexus in amphibians, reptiles and certain mammals.
Brain Research | 2004
Afraz ul Quraish; Junli Yang; Kunio Murakami; Satoko Oda; Masaaki Takayanagi; A. Kimura; Sachiko Kakuta; Kiyoshi Kishi
To understand the functional organization of the piriform cortex (PC), the axon collaterals of three pyramidal cells in layer IIb of the anterior PC and one pyramidal cell in layer IIb of the posterior PC were labeled and quantitatively analyzed by intracellular biocytin injection in the guinea pig. Single pyramidal cells in the anterior and posterior PCs have widely distributed axon collaterals, which exhibit little tendency for patchy concentrations inside as well as outside the PC. The total lengths of the axon collaterals of the three fully analyzed pyramidal cells ranged from 68 to 156 mm, more than 50% of which were distributed in the PC. The total number of boutons of the three cells ranged from 6000 to 14,000, 5000-7000 of which were distributed in the PC. It was estimated that individual pyramidal cells in layer IIb form synaptic contacts with 2200 to 3000 other pyramidal cells in the PC, indicating that single pyramidal cells in layer IIb receive input from a large number of other pyramidal cells. This high connectivity of the network of pyramidal cells in the PC can be regarded as the neural network operating parallel distributed processing, which may play an important role in experience-induced enhancement in odorant discrimination in the PC.
Journal of Neuroscience Methods | 2001
Hisayuki Ojima; Masaaki Takayanagi
In order to investigate converging projections originating from adjacent populations of cortical neurons, injections of two different anterograde tracers, biotinylated dextranamine (BDA) and Phaseolus vulgaris leucoagglutinin (PHA-L), were made in close proximity. When the two injection sites were separated by around 500 microm and the time between injections was 1--4 h, BDA-labeling of neuronal elements was found not only at the BDA injection site but also at the PHA-L injection site. This false-positive BDA labeling of neurons at the PHA-L injection site was so intense that labeled axons could be traced, both into the neighboring cortical gray matter and into white matter. Increasing the separation distance to 1000 microm resulted in much fewer falsely positive labeled neurons at the PHA-L injection site. Even more effective was extending the time interval between the two injections. Thus, if the BDA injection preceded the PHA-L injection by more than 12 h, virtually no false-positive labeling was associated with the PHA-L injection site. These procedures may be applied to other combinations of anterograde tracers, such as BDA with tetramethylrhodamine-conjugated dextran amine.
PLOS ONE | 2016
Naoyuki Kawagoe; Osamu Kano; Sho Kijima; Hideki Tanaka; Masaaki Takayanagi; Yoshihisa Urita
This study aimed to evaluate changes in glucose metabolism at the early stage and onset of diabetes in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Specifically, after the oral administration of [1, 2, 3-13C]glucose, the levels of exhaled 13CO2, which most likely originated from pyruvate decarboxylation and tricarboxylic acid, were measured. Eight OLETF rats and eight control rats (Long-Evans Tokushima Otsuka [LETO]) were administered 13C-glucose. Three types of 13C-glucose breath tests were performed thrice in each period at 2-week intervals. [3-13C]glucose results in a 13C isotope at position 1 in the pyruvate molecule, which provides 13CO2. The 13C at carbons 1 and 2 of glucose is converted to 13C at carbons 2 and 1 of acetate, respectively, which produce 13CO2. Based on metabolic differences of the labeled sites, glucose metabolism was evaluated using the results of three breath tests. The increase in 13CO2 excretion in OLETF rats was delayed in all three breath tests compared to that in control rats, suggesting that OLETF rats had a lower glucose metabolism than control rats. In addition, overall glucose metabolism increased with age in both groups. The utilization of [2-13C]glucose was suppressed in OLETF rats at 6–12 weeks of age, but they showed higher [3-13C]glucose oxidation than control rats at 22–25 weeks of age. In the [1-13C]glucose breath test, no significant differences in the area under the curve until 180 minutes (AUC180) were observed between OLETF and LETO rats of any age. Glucose metabolism kinetics were different between the age groups and two groups of rats; however, these differences were not significant based on the overall AUC180 of [1-13C]glucose. We conclude that breath 13CO2 excretion is reduced in OLETF rats at the primary stage of prediabetes, indicating differences in glucose oxidation kinetics between OLETF and LETO rats.
Tissue & Cell | 2015
Mizuho Shiino; Hideo Hoshi; Tomokazu Kawashima; Youichi Ishikawa; Masaaki Takayanagi; Kunio Murakami; Kiyoshi Kishi; Fumi Sato
The aim of the present postnatal developmental study was to determine densities of unique genital corpuscles (GCs) in glans penis of developing and aged rats. GCs were identified as corpuscular endings consisting of highly branched and coiled axons with many varicosities, which were immunoreactive for protein gene product 9.5. In addition, GCs were immunoreactive for calcitonin gene-related peptide and substance P, but not for vasoactive intestinal polypeptide and neuropeptide Y. GCs were not found in the glans penis of 1 week old rats. Densities of GCs were low at 3 weeks, significantly increased at 5 and 10 weeks, reached the peak of density at 40 weeks, and tended to decrease at 70 and 100 weeks. Sizes of GCs were small in 3 weeks old rats, increased at 5 and 10 weeks, reached the peak-size at 40 weeks and reduced in size at 70 and 100 weeks. Considering sexual maturation of the rat, the results reveal that GCs of the rat begins to develop postnatal and reaches to the peak of their development after puberty and continues to exist until old age, in contrast to prenatal and early postnatal development of other sensory receptors of glabrous skin.
Tissue & Cell | 2014
M. Hu; Masaaki Takayanagi; J. Naito
Layer 10 neurons of the chick tectum were morphologically investigated. The layer 10 neurons displayed heterogeneous immunoreactivities to calcium-binding proteins (CaBPs). Calbindin (CB)-immunoreactive (ir) neurons had pyramidal or round somata, primarily found in layers 5, 9, and 13. Parvalbumin (PV)-ir neurons were of various shapes with small to large somata (109.7±48.6μm(2)) that were located mainly in layers 4 and 10. Calretinin (CR)-ir neurons had small to middle-sized somata (79.3±9.7μm(2)) located primarily in layers 10 and 13, and most of them were similar to typical radial cells in size and shape. Two distinct types of neurons that projected to the nucleus geniculatus lateralis, pars ventralis (GLv) and ventral thalamus were demonstrated in layer 10. Type 1 cells had small to middle-sized somata (74.3±33μm(2)), and each cell had a single apical dendrite that ramified into bush-like branches in layer 7. These cells corresponded to CR-ir neurons and radial cells in size and shape. Type 2 cells had larger somata (124.7±52.6μm(2)), and their shapes were pyramidal, polygonal, or oval. They had multiple obliquely ascending dendrites that ramified into bush-like branches in layer 7. These cells often appeared similar to PV-ir neurons.
Journal of Neuroscience Research | 2013
Yuriko Inoue; Masaaki Takayanagi; Hiroyuki Sugiyama
Activity‐dependent reorganizations of central neuronal synapses are thought to play important roles in learning and memory. Although the precise mechanisms of how neuronal activities modify synaptic connections in neurons remain to be clarified, the activity‐induced neuronal presynaptic proteins such as synaptotagmin1 may contribute to the onset of synaptic remodeling. To understand better the physiological roles of synaptotagmin1, we first examined the prolonged effects of neuronal stimulation capable of inducing synaptotagmin1 on the distribution of a postsynaptic proteins (PSD) protein Homer1c by immunostaining. Previously we found that glutamate stimulation induced other postsynaptic proteins, such as postsynaptic density‐95 (PSD95), a biphasic change with an initially diffuse distribution after 30 min to 1 hr, followed by reassembly to more than the original level after 4–8 hr, suggesting that glutamate stimulation induces a global biphasic alteration in synaptic structures. To dissect further the functions of synaptotagmin1 in the activity‐induced synaptic remodeling, short hairpin RNA (shRNA) vectors that specifically block the expression of endogenous synaptotagmin1 were constructed. When the shRNA of synaptotagmin1 was introduced to the neurons, the activity‐induced changes were almost completely suppressed. We found that synaptotagmin1 contributes to the postsynaptic remodeling in a retrograde manner. Our data indicate that synaptotagmin1 regulates the activity‐induced biphasic changes of post‐ and presynaptic sites.
Japanese Journal of anatomy | 2007
Masaaki Takayanagi; Makoto Sakai; Youichi Ishikawa; Kunio Murakami; A. Kimura; Sachiko Kakuta; Fumi Sato
BMC Neuroscience | 2017
Junli Yang; Gerhard Litscher; Zhongren Sun; Qiang Tang; Kiyoshi Kishi; Satoko Oda; Masaaki Takayanagi; Zemin Sheng; Yang Liu; Wenhai Guo; Ting Zhang; Lu Wang; Ingrid Gaischek; Daniela Litscher; Irmgard Th. Lippe; Masaru Kuroda