Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masahiro Shibuta is active.

Publication


Featured researches published by Masahiro Shibuta.


ACS Nano | 2012

Molecular-Scale and Wide-Energy-Range Tunneling Spectroscopy on Self-Assembled Monolayers of Alkanethiol Molecules

Masato Nakaya; Masaya Shikishima; Masahiro Shibuta; Naoyuki Hirata; Toyoaki Eguchi; Atsushi Nakajima

The electronic properties of alkanethiol self-assembled monolayers (alkanethiolate SAMs) associated with their molecular-scale geometry are investigated using scanning tunneling microscopy and spectroscopy (STM/STS). We have selectively formed the three types of alkanethiolate SAMs with standing-up, lying-down, and lattice-gas phases by precise thermal annealing of the SAMs which are conventionally prepared by depositing alkanethiol molecules onto Au(111) surface in solution. The empty and filled states of each SAM are evaluated over a wide energy range covering 6 eV above/below the Fermi level (E(F)) using two types of STS on the basis of tunneling current-voltage and distance-voltage measurements. Electronic states originating from rigid covalent bonds between the thiol group and substrate surface are observed near E(F) in the standing-up and lying-down phases but not in the lattice-gas phase. These states contribute to electrical conduction in the tunneling junction at a low bias voltage. At a higher energy, a highly conductive state stemming from the alkyl chain and an image potential state (IPS) formed in a vacuum gap appear in all phases. The IPS shifts toward a higher energy through the change in the geometry of the SAM from the standing-up phase to the lattice-gas phase through the lying-down phase. This is explained by the increasing work function of alkanethiolate/Au(111) with decreasing density of surface molecules.


Journal of the American Chemical Society | 2015

Chemical Characterization of an Alkali-Like Superatom Consisting of a Ta-Encapsulating Si16 Cage

Masahiro Shibuta; Tsutomu Ohta; Masato Nakaya; Hironori Tsunoyama; Toyoaki Eguchi; Atsushi Nakajima

Chemical characterization was performed for an alkali-like superatom consisting of a Ta-encapsulating Si16 cage, Ta@Si16, deposited on a graphite substrate using X-ray photoelectron spectroscopy (XPS) to element-specifically clarify the local electronic structure of the cage atoms. The XPS spectra derived from Ta 4f and Si 2p core levels have been well modeled with a single chemical component, revealing the formation of a symmetric Si cage around the Ta atom in the deposited nanoclusters. On chemical treatments by heating or oxygen exposure, it is found that the deposited Ta@Si16 is thermally stable up to 700 K and is also exceptionally less reactive toward oxygen compared to other Ta-Si nanoclusters, although some heat degradation and oxidation accompany the treatments. These results show the promising possibility of applying Ta@Si16 as a building block to fabricate cluster-assembled materials consisting of naked nanoclusters.


Scientific Reports | 2016

Direct observation of photocarrier electron dynamics in C60 films on graphite by time-resolved two-photon photoemission

Masahiro Shibuta; Kazuo Yamamoto; Tsutomu Ohta; Masato Nakaya; Toyoaki Eguchi; Atsushi Nakajima

Time-resolved two-photon photoemission (TR-2PPE) spectroscopy is employed to probe the electronic states of a C60 fullerene film formed on highly oriented pyrolytic graphite (HOPG), acting as a model two-dimensional (2D) material for multi-layered graphene. Owing to the in-plane sp2-hybridized nature of the HOPG, the TR-2PPE spectra reveal the energetics and dynamics of photocarriers in the C60 film: after hot excitons are nascently formed in C60 via intramolecular excitation by a pump photon, they dissociate into photocarriers of free electrons and the corresponding holes, and the electrons are subsequently detected by a probe photon as photoelectrons. The decay rate of photocarriers from the C60 film into the HOPG is evaluated to be 1.31 × 1012 s−1, suggesting a weak van der Waals interaction at the interface, where the photocarriers tentatively occupy the lowest unoccupied molecular orbital (LUMO) of C60. The photocarrier electron dynamics following the hot exciton dissociation in the organic thin films has not been realized for any metallic substrates exhibiting strong interactions with the overlayer. Furthermore, the thickness dependence of the electron lifetime in the LUMO reveals that the electron hopping rate in C60 layers is 3.3 ± 1.2 × 1013 s−1.


Journal of the American Chemical Society | 2014

Probing of an adsorbate-specific excited state on an organic insulating surface by two-photon photoemission spectroscopy

Masahiro Shibuta; Naoyuki Hirata; Toyoaki Eguchi; Atsushi Nakajima

In this study, we investigate the photoexcited electronic states of ferrocene (Fc) molecules adsorbed on an organic insulating surface by two-photon photoemission spectroscopy. This insulating layer, composed of a decanethiolate self-assembled monolayer formed on an Au(111) substrate, enables us to probe the electronically excited states localized at the adsorbed Fc molecules. The adsorbate-specific state is resonantly excited by photons at 4.57 eV, which is 0.5 eV smaller than the energy of the first molecular Rydberg state of free Fc in the gas phase. This result indicates that the electrons are bound to both the excited hole formed in the adsorbate and the positive image charge induced in the substrate. The hybridized electronic characteristics of the adsorbate-specific state are responsible for the strong transition selectivity and short lifetime of the excited state.


Plasmonics | 2013

Imaging and Characterizing Long-Range Surface Plasmon Polaritons Propagating in a Submillimeter Scale by Two-Color Two-Photon Photoelectron Emission Microscopy

Masahiro Shibuta; Toyoaki Eguchi; Atsushi Nakajima

Long-range surface plasmon polaritons (SPPs), which propagate along metal/dielectric interfaces to submillimeter distances in the range of near-infrared (NIR) excitation wavelength, were examined by two-color two-photon photoelectron emission microscopy (2P-PEEM). Interferences between incident NIR photons and SPPs excited by the NIR photons at surface defects were imaged by detecting photoelectrons emitted from a gold surface, assisted by simultaneously irradiated ultraviolet photons which are to overcome the workfunction of the surface. The wavelength of the interference beat depends sensitively on the NIR wavelength. By analyzing the interference beat, the dispersion curve as well as phase and group velocities of SPP’s were experimentally obtained. The results closely match the theoretical one based on the Drude free electron model, indicating that two-color 2P-PEEM is applicable not only to the visualization of NIR-excited SPPs but also to the quantitative analysis of its physical properties. This method will be widely used to observe SPPs for various artificial plasmonic devices.


Applied Physics Letters | 2012

Probing buried organic-organic and metal-organic heterointerfaces by hard x-ray photoelectron spectroscopy

Masahiro Shibuta; Toyoaki Eguchi; Yoshio Watanabe; Jin Young Son; Hiroshi Oji; Atsushi Nakajima

We present a nondestructive characterization method for buried hetero-interfaces for organic/organic and metal/organic systems using hard x-ray photoelectron spectroscopy (HAXPES) which can probe electronic states at depths deeper than ∼10 nm. A significant interface-derived signal showing a strong chemical interaction is observed for Au deposited onto a C60 film, while there is no such additional feature for copper phthalocyanine deposited onto a C60 film reflecting the weak interaction between the molecules in the latter case. A depth analysis with HAXPES reveals that a Au-C60 intermixed layer with a thickness of 5.1 nm is formed at the interface.


Applied Physics Letters | 2016

Imaging and spectromicroscopy of photocarrier electron dynamics in C60 fullerene thin films

Masahiro Shibuta; Kana Yamagiwa; Toyoaki Eguchi; Atsushi Nakajima

We have employed a two-photon photoelectron emission microscopy (2P-PEEM) to observe the photocarrier electron dynamics in an organic thin film of fullerene (C60) formed on a highly oriented pyrolytic graphite with a spatial resolution of ca. 135 nm. In this approach, photocarrier electrons in C60 single-layer islands generated by the first pump photon are detected by the second probe photon. These spectromicroscopic observations conducted over a 100 × 100 nm2 region of C60 islands consistently reproduced the macroscopic two-photon photoemission spectrum of fully covered C60 monolayer film, where the energy of photocarrier electron in the islands was +0.9 eV relative to the Fermi level. Time-resolved 2P-PEEM revealed that the photocarrier electron decayed from the monolayered C60 islands into the substrate with a time constant of 470 ± 30 fs.


Proceedings of SPIE | 2006

One- and two-photon photoemission microspectroscopy for organic films

Toshiaki Munakata; Masahiro Shibuta; M. Mikamori; Takashi Yamada; Keisuke Miyakubo; T. Sugiyama; Y. Sonoda

We have constructed a laser-based microspot photoemission spectrometer which achieved lateral resolution of 0.3 μm and energy resolution of 30 meV. The light source at wavelength of 140 nm (photon energy of 8.86 eV) was generated as the 6-th harmonics of a titanium sapphire laser of 100 fs pulse duration. The high-energy resolution is the characteristics of our apparatus. The space-charge effect which affects the energy resolution and limits the sensitivity was described. The apparatus was applied to reveal spatial inhomogeneity of copper phthalocyanine films caused by intermolecular interaction and inter-layer interaction. We found that the highest occupied molecular orbital is peaking at the binding energies of 1.13, 1.23, and 1.38 eV depending on the film thickness and the sample positions. The peaks were assigned to originate from isolated molecules, ordered monolayer, and the second layer, respectively. The apparatus can also be operated as microspot two-photon photoemission spectrometer which probes unoccupied electronic states. A surface image due to the unoccupied first image potential state of Cu(111) facets showed that the lateral resolution for two photon photoemission with a light of 280 nm wavelength was 0.4 μm, smaller by 1/√2 than the diffraction limited spot size.


Journal of Physical Chemistry C | 2013

Size and Structure Dependence of Electronic States in Thiolate-Protected Gold Nanoclusters of Au25(SR)18, Au38(SR)24, and Au144(SR)60

Tsutomu Ohta; Masahiro Shibuta; Hironori Tsunoyama; Yuichi Negishi; Toyoaki Eguchi; Atsushi Nakajima


Journal of Physical Chemistry C | 2010

Novel Growth of Naphthalene Overlayer on Cu(111) Studied by STM, LEED, and 2PPE

Takashi Yamada; Masahiro Shibuta; Yohei Ami; Yasuhiro Takano; Akihiro Nonaka; Keisuke Miyakubo; Toshiaki Munakata

Collaboration


Dive into the Masahiro Shibuta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge