Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masanobu Deshimaru is active.

Publication


Featured researches published by Masanobu Deshimaru.


FEBS Letters | 1996

Accelerated evolution of crotalinae snake venom gland serine proteases

Masanobu Deshimaru; Tomohisa Ogawa; Kinichi Nakashima; Ikuo Nobuhisa; Takahito Chijiwa; Yasuyuki Shimohigashi; Yasuyuki Fukumaki; Mineo Niwa; Ikuo Yamashina; Shosaku Hattori; Motonori Ohno

Eight cDNAs encoding serine proteases isolated from Trimeresurus flavoviridis (habu snake) and T. gramineus (green habu snake) venom gland cDNA libraries showed that nonsynonymous nucleotide substitutions have accumulated in the mature protein‐coding regions to cause amino acid changes. Southern blot analysis of T. flavoviridis genomic DNAs using two proper probes indicated that venom gland serine protease genes form a multigene family in the genome. These observations suggest that venom gland serine proteases have diversified their amino acid sequences in an accelerating manner. Since a similar feature has been previously discovered in crotalinae snake venom gland phospholipase A2 (PLA2) isozyme genes, accelerated evolution appears to be universal in plural isozyme families of crotalinae snake venom gland.


Immunopharmacology | 1999

Bradykinin-potentiating peptides and C-type natriuretic peptides from snake venom.

Shigesada Higuchi; Nobuhiro Murayama; Ken-ichi Saguchi; Hiroaki Ohi; Yoshiaki Fujita; Antonio C.M. Camargo; Tomohisa Ogawa; Masanobu Deshimaru; Motonori Ohno

Cloning of cDNAs encoding bradykinin-potentiating peptides (BPPs)-C-type natriuretic peptide (CNP) precursor or its homologue was performed for cDNA libraries of Bothrops jararaca (South American snake), Trimeresurus flavoviridis, Trimeresurus gramineus and Agkistrodon halys blomhoffi (Asian snakes), all belonging to Crotalinae subfamily. Each cDNA library was constructed from the venom glands of a single snake to preclude ambiguity by intraspecies variation in venom components. Thirteen positive clones derived from B. jararaca were divided into two types depending on restriction sites. Differences in the nucleotide sequence arise at three locations and two of them accompanied amino acid conversions. Despite the differences, both types of cDNA clones encode the BPP-CNP precursor of 256 amino acid residues. Sequence analysis demonstrated that cDNA clones from three Asian snakes encode homologues of the BPP-CNP precursor from B. jararaca. In a precursor polypeptide, a signal sequence (approximately 25 aa) at the N-terminus is followed by sequences of BPP or the analogue (5-13 aa) with flanking spacer sequences (indefinite number of aa), an intervening linker sequence (approximately 144 aa) with unidentified function, and a CNP sequence (22 aa) with a preceding processing signal sequence (10 aa). cDNA clones from A. halys blomhoffi encode two distinct peptides in place of BPP, and T. flavoviridis and T. gramineus were shown to have considerably different sequences in the BPP domain from those known as BPP sequences. The present results provide evidence for a wide distribution of the orthologous gene expressing a series of bioactive peptides among Crotalinae subfamily.


Toxicon | 1996

Accelerated evolution of snake venom phospholipase A2 isozymes for acquisition of diverse physiological functions

Tomohisa Ogawa; Kinichi Nakashima; Ikuo Nobuhisa; Masanobu Deshimaru; Yasuyuki Shimohigashi; Yasuyuki Fukumaki; Yoshiyuki Sakaki; Shosaku Hattori; Motonori Ohno

The nucleotide sequences of two cDNAs and four genes encoding Trimeresurus gramineus venom gland phospholipase A2 (PLA2) isozymes were determined and compared internally and externally with those encoding Trimeresurus flavoviridis venom gland PLA2 isozymes. It was revealed that the protein-coding regions are much more diversified than the 5 and 3 untranslated regions (UTRs) and the introns except for the signal peptide domain. The numbers of nucleotide substitutions per site (KN) for the UTRs and the introns were approximately one-quarter of the numbers of nucleotide substitutions per synonymous site (KS) for the protein-coding regions and were at the same level as the KN value of T. gramineus and T. flavoviridis TATA box-binding protein (TBP) genes, indicating that the protein-coding regions of PLA2 isozyme genes are unusually variable and that the UTRs including the introns of venom gland PLA2 isozyme genes have evolved at similar rate to those of non-venomous genes. The numbers of nucleotide substitutions per non-synonymous site (KA) values were close to or larger than the KS values for the protein-coding regions in venom gland PLA2 isozyme genes, indicating that the protein-coding regions of snake venom gland PLA2 isozyme genes have evolved via accelerated evolution. Furthermore, the evolutionary trees derived from the combined sequences of the 5 and 3 UTRs and the signal peptide domain of cDNAs were in accord with the consequences from taxonomy. In contrast, the evolutionary trees from the mature protein-coding region sequences of cDNAs and from the amino acid sequences showed random patterns. Estimations of nucleotide divergence of genes and the phylogenetic analysis reveal that snake venom group IJ PLA2 isozyme genes have been evolving under adaptive pressure to acquire new physiological activities.


Gene | 1996

Accelerated evolution of Trimeresurus okinavensis venom gland phospholipase A2 isozyme-encoding genes.

Ikuo Nobuhisa; Kinichi Nakashima; Masanobu Deshimaru; Tomohisa Ogawa; Yasuyuki Shimohigashi; Yasuyuki Fukumaki; Yoshiyuki Sakaki; Shosaku Hattori; Hiroshi Kihara; Motonori Ohno

Three Trimeresurus okinavensis (To; himehabu snake, Crotalinae) venom gland phospholipase A2 (PLA2) isozymeencoding genes, gPLA2-o1, gPLA2-o2 and gPLA2-o3, were isolated from its genomic DNA library. The nucleotide (nt) sequence analysis revealed that two of the three genes (gPLA2-o2 and gPLA2-o3) occasionally have been converted to inactivated genes by introduction of one base insertion or substitution. It was confirmed from Southern blot analysis that the To haploid genome contains only three venom gland PLA2 isozyme genes herein isolated. Comparison of these genes showed that nonsynonymous nt substitutions have occurred more frequently than synonymous nt substitutions in the protein-coding regions, except for the signal-peptide coding domain, implying that To venom gland PLA2 isozyme genes have evolved via accelerated evolution. Such an evolutionary feature of To venom gland PLA2 isozyme genes proves the general universality of accelerated evolution previously drawn for venom gland PLA2 isozyme genes of other crotalinae snakes. The variability in the mature protein-coding regions of three To venom gland PLA2 isozyme genes appears to have been brought about by natural selection for point mutations.


Biochemical Journal | 2000

Regional evolution of venom-gland phospholipase A2 isoenzymes of Trimeresurus flavoviridis snakes in the southwestern islands of Japan.

Takahito Chijiwa; Masanobu Deshimaru; Ikuo Nobuhisa; Makoto Nakai; Tomohisa Ogawa; Naoko Oda; Kinichi Nakashima; Yasuyuki Fukumaki; Yasuyuki Shimohigashi; Shosaku Hattori; Motonori Ohno

Conventional chromatographic analysis showed that phospholipase A(2) (PLA(2)) isoenzymes of the venom of Trimeresurus flavoviridis (Habu snake) of Okinawa island are profoundly different in composition from those of T. flavoviridis of Amami-Oshima and Tokunoshima islands. The most striking feature was that myotoxic [Lys(49)]PLA(2) isoenzymes, called BPI and BPII, which are expressed abundantly in the venoms of Amami-Oshima and Tokunoshima T. flavoviridis, are missing from the venom of Okinawa T. flavoviridis. Northern blot analysis of Okinawa T. flavoviridis venom-gland mRNA species showed the absence of BPI and BPII mRNA species. Analysis by single-stranded conformational polymorphism-PCR of venom-gland mRNA species of T. flavoviridis from three islands, with reference to five DNA species each encoding different PLA(2) isoenzymes from Tokunoshima T. flavoviridis venom gland, also suggested that BPI and BPII mRNA species are not expressed in Okinawa T. flavoviridis venom gland. In contrast, genomic Southern blot analysis with a variety of probes showed that only the bands corresponding to the upstream and downstream regions of the genes for BPI and/or BPII can be detected in Okinawa T. flavoviridis. These results suggested that the genes for BPI and BPII in Okinawa T. flavoviridis genome had been inactivated to form pseudogenes. Differently from Amami-Oshima and Tokunoshima T. flavovirdis genomic DNAs, PCR amplification of the segments of BPI and BPII genes between the 5 moiety of second exon and the middle portion of second intron failed for Okinawa T. flavoviridis genomic DNAs. In sequence analysis of the two segments involving polymorphism between BPI and BPII genes, which are located in first exon and third exon, respectively, only one base was detected at the polymorphic positions for pseudogene in Okinawa T. flavoviridis genome. Based on these facts, it became evident for pseudogene that the upstream region of BPI gene down to the 5 moiety of second exon and the downstream region of BPII gene starting from the middle portion of second intron are in a linked form with a possible insertion. Such observations suggest that venom-gland genes for PLA(2) isoenzymes in T. flavoviridis snakes isolated for one to two million years have evolved independently. Their evolution is regional and seems, from several lines of consideration and observation, to be adaptive to the environment.


Journal of Molecular Evolution | 2003

Interisland Evolution of Trimeresurus flavoviridis Venom Phospholipase A2 Isozymes

Takahito Chijiwa; Yoko Yamaguchi; Tomohisa Ogawa; Masanobu Deshimaru; Ikuo Nobuhisa; Kinichi Nakashima; Naoko Oda-Ueda; Yasuyuki Fukumaki; Shosaku Hattori; Motonori Ohno

AbstractnTrimeresurus flavoviridis snakes inhabit the southwestern islands of Japan. A phospholipase A2 (PLA2), named PL-Y, was isolated from Okinawa T. flavoviridis venom and its amino acid sequence was determined from both protein and cDNA. PL-Y was unable to induce edema. In contrast, PLA-B, a PLA2 from Tokunoshima T. flavoviridis venom, which is different at only three positions from PL-Y, is known to induce edema. A new PLA2, named PLA-B′, which is similar to PLA-B, was cloned from Amami-Oshima T. flavoviridis venom gland. Three T. flavoviridis venom basic [Asp49]PLA2 isozymes, PL-Y (Okinawa), PLA-B (Tokunoshima), and PLA-B′ (Amami-Oshima), are identical in the N-terminal half but have one to four amino acid substitutions in the β1-sheet and its vicinity. Such interisland sequence diversities among them are due to isolation in the different environments over 1 to 2 million years and appear to have been brought about by natural selection for point mutation in their genes. Otherwise, a major PLA2, named PLA2, ubiquitously exists in the venoms of T. flavoviridis snakes from the three islands with one to three synonymous substitutions in their cDNAs. It is assumed that the PLA2 gene is a prototype among T. flavoviridis venom PLA2 isozyme genes and has hardly undergone nonsynonymous mutation as a principal toxic component. Phylogenetic analysis based on the amino acid sequences revealed that T. flavoviridis PLA2 isozymes are clearly separated into three groups, PLA2 type, basic [Asp49]PLA2 type, and [Lys49]PLA2 type. Basic [Asp49]PLA2-type isozymes may manifest their own particular toxic functions different from those of the isozymes of the PLA2 type and [Lys49]PLA2 type.


Toxicon | 2002

Characterization, primary structure and molecular evolution of anticoagulant protein from Agkistrodon actus venom

Ayako Tani; Tomohisa Ogawa; Takeru Nose; Nikolai N. Nikandrov; Masanobu Deshimaru; Takahito Chijiwa; Chun Chang Chang; Yasuyuki Fukumaki; Motonori Ohno

An anticoagulant protein named AaACP was isolated from Agkistrodon actus (hundred-pace snake of Taiwan, Viperidae) venom. AaACP inhibited the factor Xa-induced plasma coagulation in a concentration-dependent manner. Thus, AaACP seems to bind to factor Xa in prothrombinase complex. AaACP was composed of A and B chains linked by disulphide bond(s). The amino acid sequences of A and B chains of AaACP were analysed with a few residues unidentified which were complemented from the nucleotide sequences of their cDNAs. The A chain consisted of 129 amino acid residues and the B chain 123 amino acid residues. Their amino acid sequences were highly similar to those of A and B chains of a series of anticoagulant proteins which had been purified from the venoms of some Viperidae snakes. The A and B chains structurally belong to C-type lectin-like protein family of snake venom origin. Construction of phylogenetic tree of C-type lectins and C-type lectin-like proteins based on their amino acid sequences indicated that their A and B chains diverged before speciation of snake species. The comparison of the nucleotide sequences of the cDNAs encoding A and B chains of AaACP and of Trimeresurus flavoviridis (Viperidae) venom-gland factors IX/X-binding protein and factor IX-binding protein showed that the mature protein-coding region is much more variable than the signal peptide-coding domain and the 5- and 3-untranslated regions, being in contrast to the case of the ordinary isoprotein genes. The ratios of the numbers of nucleotide substitutions per nonsynonymous site (K(A)) and per synonymous site (K(S)) in the mature protein-coding region in the cDNA pairs were about three times greater than those for the ordinary isoprotein genes, suggesting that these genes have been evolving in an accelerated manner. Taking account of the functional diversities of venom-gland C-type lectins and C-type lectin-like proteins including factors IX and/or X-binding proteins, it can be said that their functional diversities have been acquired by accelerated evolution.


Journal of Molecular Evolution | 2003

Interisland mutation of a novel phospholipase A2 from Trimeresurus flavoviridis venom and evolution of Crotalinae group II phospholipases A2.

Takahito Chijiwa; Sachiko Hamai; Shoji Tsubouchi; Tomohisa Ogawa; Masanobu Deshimaru; Naoko Oda-Ueda; Shosaku Hattori; Hiroshi Kihara; Susumu Tsunasawa; Motonori Ohno

Trimeresurus flavoviridis (Crotalinae) snakes inhabit the southwestern islands of Japan: Amami-Oshima, Tokunoshima, and Okinawa. Affinity and conventional chromatographies of Amami-Oshima T. flavoviridis venom led to isolation of a novel phospholipase A2 (PLA2). This protein was highly homologous (91%) in sequence to trimucrotoxin, a neurotoxic PLA2, which had been isolated from T. mucrosquamatus (Taiwan) venom, and exhibited weak neurotoxicity. This protein was named PLA-N. Its LD50 for mice was 1.34 µg/g, which is comparable to that of trimucrotoxin. The cDNA encoding PLA-N was isolated from both the Amami-Oshima and the Tokunoshima T. flavoviridis venom-gland cDNA libraries. Screening of the Okinawa T. flavoviridis venom-gland cDNA library with PLA-N cDNA led to isolation of the cDNA encoding one amino acid-substituted PLA-N homologue, named PLA-N(O), suggesting that interisland mutation occurred and that Okinawa island was separated from a former island prior to dissociation of Amami-Oshima and Tokunoshima islands. Construction of a phylogenetic tree of Crotalinae venom group II PLA2’s based on the amino acid sequences revealed that neurotoxic PLA2’s including PLA-N and PLA-N(O) form an independent cluster which is distant from other PLA2 groups such as PLA2 type, basic [Asp49]PLA2 type, and [Lys49]PLA2 type. Comparison of the nucleotide sequence of PLA-N cDNA with those of the cDNAs encoding other T. flavoviridis venom PLA2’s showed that they have evolved in an accelerated manner. However, when comparison was made within the cDNAs encoding Crotalinae venom neurotoxic PLA2‘s, their evolutionary rates appear to be reduced to a level between accelerated evolution and neutral evolution. It is likely that ancestral genes of neurotoxic PLA2’s evolved in an accelerated manner until they had acquired neurotoxic function and since then they have evolved with less frequent mutation, possibly for functional conservation.


Toxicon | 2000

Regional and accelerated molecular evolution in group I snake venom gland phospholipase A2 isozymes.

Yoshiro Chuman; Ikuo Nobuhisa; Tomohisa Ogawa; Masanobu Deshimaru; Takahito Chijiwa; Nget Hong Tan; Yasuyuki Fukumaki; Yasuyuki Shimohigashi; Frédéric Ducancel; Jean-Claude Boulain; André Ménez; Motonori Ohno

In accordance with detection of a few phospholipase A2 (PLA2) isozyme genes by Southern blot analysis, only two cDNAs, named NnkPLA-I , and NnkPLA-II, encoding group I PLA2s, NnkPLA-I and NnkPLA-II, respectively, were isolated from the venom gland cDNA library of Elapinae Naja naja kaouthia of Malaysia. NnkPLA-I and NnkPLA-II showed four amino acid substitutions, all of which were brought about by single nucleotide substitution. No existence of clones encoding CM-II and CM-III, PLA2 isozymes which had been isolated from the venom of N. naja kaouthia of Thailand, in Malaysian N. naja kaouthia venom gland cDNA library was verified by dot blot hybridization analysis with particular probes. NnkPLA-I and NnkPLA-II differed from CM-II and CM-III with four and two amino acid substitutions, respectively, suggesting that their molecular evolution is regional. The comparison of NnkPLA-I, NnkPLA-II and cDNAs encoding other group I snake venom gland PLA2s indicated that the 5- and 3-untranslated regions are more conserved than the mature protein-coding region and that the number of nucleotide substitutions per nonsynonymous site is almost equal to that per synonymous site in the protein-coding region, suggesting that accelerated evolution has occurred in group I venom gland PLA2s possibly to acquire new physiological functions.


Gene | 1997

Structures of genes encoding phospholipase A2 inhibitors from the serum of Trimeresurus flavoviridis snake

Ikuo Nobuhisa; Masanobu Deshimaru; Takahito Chijiwa; Kinichi Nakashima; Tomohisa Ogawa; Yasuyuki Shimohigashi; Yasuyuki Fukumaki; Shosaku Hattori; Hiroshi Kihara; Motonori Ohno

Inhibitors (PLIs) against snake venom gland phospholipases A2 (PLA2s) have been found in their sera. A cDNA encoding a PLI from Trimeresurus flavoviridis (Tf, habu snake, Crotalinae) serum, cPLI-A, was isolated from the Tf liver cDNA library and sequenced. Northern blot analysis with cPLI-A showed that PLIs are expressed only in liver. Genes for PLIs, gPLI-A and gPLI-B, were isolated from the Tf genomic DNA library and their nucleotide (nt) sequences were determined. The genes consisted of four exons and three introns, and exon 4 encoded the carbohydrate recognition domain (CRD)-like motif. Comparison of the nt sequences between gPLI-A and gPLI-B showed that these genes are highly homologous, including introns, except that exon 3 is rich in nonsynonymous nt substitutions which are almost four times as frequent as synonymous nt substitutions. This evolutionary feature of PLI genes is different from that of venom gland PLA2 isozyme genes in which nonsynonymous nt substitutions are spread over the entire mature protein-coding region.

Collaboration


Dive into the Masanobu Deshimaru's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshiyuki Sakaki

Toyohashi University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge