Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masaya Takeda is active.

Publication


Featured researches published by Masaya Takeda.


Biology of Reproduction | 2006

Mutual Regulation of Follicle-Stimulating Hormone Signaling and Bone Morphogenetic Protein System in Human Granulosa Cells

Tomoko Miyoshi; Fumio Otsuka; Jiro Suzuki; Masaya Takeda; Kenichi Inagaki; Yoshihiro Kano; Hiroyuki Otani; Yukari Mimura; Toshio Ogura; Hirofumi Makino

Abstract Bone morphogenetic proteins (BMPs) play critical roles in folliculogenesis by modulating the actions of follicle-stimulating hormone (FSH) in the ovary. However, the effects of FSH on the BMP system remain unknown. Here, we have investigated the effects of FSH on BMP signaling using the human granulosa-like tumor cell line KGN. KGN cells express BMP type I and type II receptors and the BMP signaling molecules SMADs. FSH administration upregulated BMP type IA (BMPR1A) and IB (BMPR1B) receptors, activin type II receptor (ACVR2), and BMP type II receptor (BMPR2). FSH also augmented SMAD1 and SMAD5 expression, and conversely, FSH suppressed the expression of the inhibitory SMADs, SMAD6 and SMAD7. Bioassays revealed that FSH enhances BMP-induced SMAD1/5/8 phosphorylation and cellular DNA synthesis induced by BMP6 and BMP7. Since overexpression of BMPR1A and BMPR1B, but not SMADs, significantly enhanced the BMP responses, these type I receptors were revealed to be limiting factors for BMP signaling in KGN cells. BMPs significantly suppressed progesterone synthesis induced by forskolin and dibutyryl-cAMP (BtcAMP) but had no effect on estradiol induced by the same factors. KGN cAMP levels induced by forskolin were not altered by BMPs, suggesting that BMPs regulate steroidogenesis at a level downstream of cAMP synthesis in KGN cells. In this regard, BMPs specifically reduced the STAR transcription, whereas the levels of CYP11A, HSD3B2, and CYP19 stimulated by forskolin as well as BtcAMP were not altered. Collectively, the two major factors, FSH-cAMP pathway and BMP system, are reciprocally and functionally linked. Given that BMPs downregulate FSH receptors in KGN cells, this interaction may contribute to fine-tuning of the mutual sensitivity toward BMP ligands and FSH.


Biochemical and Biophysical Research Communications | 2003

Involvement of activin/BMP system in development of human pituitary gonadotropinomas and nonfunctioning adenomas

Masaya Takeda; Fumio Otsuka; Jiro Suzuki; Masayuki Kishida; Toshio Ogura; Takashi Tamiya; Hirofumi Makino

Roles of activin/bone morphogenetic protein (BMP) system in the pathogenesis of human pituitary adenoma remain unknown although these factors stimulate follicle-stimulating hormone (FSH) secretion in the normal pituitary. Here we demonstrated that type-I and -II subunit mRNAs of activin/BMP receptors are expressed in Pit-1-negative FSH-producing (FSH-oma) and nonfunctioning pituitary adenomas (NF-oma). Basal levels of serum FSH standardized by luteinizing hormone (LH) were markedly high in FSH-omas in contrast to NF-omas. However, gonadotropin-releasing hormone (GnRH)-induced increment of FSH standardized by that of LH was not changed in FSH-omas, suggesting that imbalanced FSH secretion by FSH-oma is not attributable to GnRH regardless of the expression of GnRH receptor. Although activin betaA subunit was detected in neither adenoma, the betaB subunit was expressed highly in FSH-omas and, to lesser extent, in NF-omas. As for BMPs, BMP-6 and -7 were detected in NF-omas while BMP-4 and -15 were not detected in either type of adenoma. In the presence of pituitary activin/BMP system, the levels of co-expressing follistatin mRNA in the tumors were reduced in FSH-oma compared with NF-oma, suggesting that endogenous follistatin is involved in FSH overproduction through inhibition of activin/BMP system independently of GnRH.


Molecular and Cellular Endocrinology | 2010

Estrogen and glucocorticoid regulate osteoblast differentiation through the interaction of bone morphogenetic protein-2 and tumor necrosis factor-α in C2C12 cells

Yoshinori Matsumoto; Fumio Otsuka; Mariko Takano; Tomoyuki Mukai; Ryutaro Yamanaka; Masaya Takeda; Tomoko Miyoshi; Kenichi Inagaki; Ken Ei Sada; Hirofumi Makino

Imbalanced functions between osteoclasts and osteoblasts are involved in inflammatory bone damage. The clinical effectiveness of blocking TNF-alpha in treatment of active rheumatoid arthritis established the significance of TNF-alpha in the pathogenesis. In the present study, we investigated the cellular mechanism by which estrogen and glucocorticoid interact in osteoblastic differentiation regulated by BMP and TNF-alpha using mouse myoblastic C2C12 cells. The expression of estrogen receptors, (ER)alpha and ERbeta, and glucocorticoid receptor (GCR) was significantly increased by BMP-2 treatment regardless of the presence of estradiol and dexamethasone. Estradiol, but not dexamethasone, enhanced BMP-induced Runx2 and osteocalcin expression in C2C12 cells. In addition, TNF-alpha suppressed BMP-2-induced Runx2 and osteocalcin expression, and estradiol and dexamethasone reversed the TNF-alpha effects on BMP-2-induced Runx2 expression. Dexamethasone also abolished osteocalcin expression induced by BMP-2. Interestingly, BMP-2-induced Smad1/5/8 phosphorylation and Id-1 promoter activity were enhanced by estradiol pretreatment. On the other hand, dexamethasone suppressed BMP-2-induced Smad1/5/8 activation. TNF-alpha-induced SAPK/JNK activity was suppressed by estradiol, while NFkappaB phosphorylation was inhibited by dexamethasone. Of note, the inhibitory effects of TNF- on BMP-2-induced Runx2 and osteocalcin expression were reversed by SAPK/JNK inhibition regardless of the presence of estradiol. The estradiol effects that enhance BMP-2-induced Runx2 and osteocalcin mRNA expression were restored by antagonizing ER, and moreover, membrane-impermeable estradiol-BSA failed to enhance the BMP-2-induced osteoblastic differentiation. Thus, estrogen and glucocorticoid are functionally involved in the process of osteoblast differentiation regulated by BMPs and TNF-alpha. BMP-2 increases the sensitivities of ERs and GCR, whereas estrogen and glucocorticoid differentially regulate BMP-Smad and TNF-alpha signaling.


Journal of Endocrinology | 2007

Effects of peroxisome proliferator-activated receptor activation on gonadotropin transcription and cell mitosis induced by bone morphogenetic proteins in mouse gonadotrope LβT2 cells

Masaya Takeda; Fumio Otsuka; Hiroyuki Otani; Kenichi Inagaki; Tomoko Miyoshi; Jiro Suzuki; Yukari Mimura; Toshio Ogura; Hirofumi Makino

Involvement of peroxisome proliferator-activated receptor-gamma (PPAR-gamma ) activation and bone morphogenetic protein (BMP) signaling in regulating cell proliferation and hormonal production of pituitary tumors has been reported, although the underlying mechanism remains poorly understood. Here, we investigated regulatory roles of PPARalpha and PPARgamma in gonadotropin transcription and cell mitosis modulated by pituitary activin/BMP systems using a mouse gonadotropinoma cell line Lbeta T2, which expresses activin/BMP receptors, transcription factor Smads, PPARalpha , and PPARgamma . In Lbeta T2 cells, BMP signaling shown by Smad1/5/8 phosphorylation and Id-1 transcription was readily activated by BMPs. A PPARgamma agonist, pioglitazone significantly reduced BMP-induced DNA synthesis by Lbeta T2; whereas the PPARalpha agonist, fenofibric acid, did not. In accordance with the effects on cell mitosis, pioglitazone but not fenofibric acid significantly decreased BMP-induced Id-1-Luc activation. Neither fenofibric acid nor pioglitazone affected activin signaling detected by (CAGA)9-Luc activity. Both PPARalpha and PPARgamma ligands directly suppressed transcriptional activities of FSHbeta , LHbeta , and GnRHR. Activation of PPARalpha and PPARgamma increased mRNA levels of follistatin, but did not affect the expression of follistatin-related gene. Thus, PPAR agonists not only directly suppress gonadotropin transcription and BMP signaling, but also inhibit the biological actions of activins which facilitate gonadotropin transcription through upregulating follistatin expression. In addition, pioglitazone increased BMP ligands mRNA, but decreased activin-beta B mRNA in Lbeta T2 cells. Collectively, PPAR activation differentially regulates gonadotrope cell proliferation and gonadotropin transcription in a ligand-dependent manner.


Endocrinology | 2010

Effects of bone morphogenetic protein (BMP) on adrenocorticotropin production by pituitary corticotrope cells: Involvement of up-regulation of bmp receptor signaling by somatostatin analogs

Naoko Tsukamoto; Fumio Otsuka; Tomoko Miyoshi; Ryutaro Yamanaka; Kenichi Inagaki; Misuzu Yamashita; Hiroyuki Otani; Masaya Takeda; Jiro Suzuki; Toshio Ogura; Yasumasa Iwasaki; Hirofumi Makino

The mechanism by which somatostatin analogs suppress ACTH production by corticotropinomas has yet to be fully elucidated. We here studied the effects of somatostatin analogs on ACTH secretion using mouse corticotrope AtT20 cells focusing on the biological activity of bone morphogenetic proteins (BMPs). BMP ligands, receptors and Smads, and somatostatin receptors (SSTRs)-2, -3, and -5 were expressed in AtT20 cells. BMP-2, -4, -6, and -7 decreased basal ACTH production with BMP-4 effects being the most prominent. BMP-4 also inhibited CRH-induced ACTH production and proopiomelanocortin (POMC) transcription. However, the decrease in CRH-induced cAMP accumulation caused by BMP-4 was not sufficient to completely account for BMP-4 actions, indicating that ACTH suppression by BMPs was not directly linked to cAMP inhibition. CRH-activated ERK1/ERK2, p38-MAPK, stress-activated protein kinase/c-Jun NH(2)-terminal kinase, protein kinase C, and Akt pathways and CRH-induced ACTH synthesis was significantly decreased in the presence of U0126 or SB203580. Because BMPs attenuated CRH-induced ERK and p38 phosphorylation, it was suggested that BMP-4 suppresses ACTH production by inhibiting CRH-induced ERK and p38 phosphorylation. Somatostatin analogs octreotide and pasireotide (SOM230) significantly suppressed CRH-induced ACTH and cAMP production in AtT20 cells and reduced ERK and p38 phosphorylation. Notably, CRH-induced ACTH production was enhanced in the presence of noggin, a BMP-binding protein. The inhibitory effects of octreotide and SOM230 on CRH-induced ACTH production were also attenuated by noggin, implying that the endogenous BMP system plays a key role in inhibiting CRH-induced ACTH production by AtT20 cells. The findings that OCT and SOM230 up-regulated BMP-Smad1/Smad5/Smad8 signaling and ALK-3 and BMPRII and down-regulated inhibitory Smad6/7 establish that the activation of endogenous BMP system is functionally involved in the mechanism by which somatostatin analogs suppress CRH-induced ACTH production.


Hypertension Research | 2010

Involvement of the bone morphogenetic protein system in endothelin-and aldosterone-induced cell proliferation of pulmonary arterial smooth muscle cells isolated from human patients with pulmonary arterial hypertension

Ryutaro Yamanaka; Fumio Otsuka; Kazufumi Nakamura; Misuzu Yamashita; Hiroyuki Otani; Masaya Takeda; Yoshinori Matsumoto; Kengo Kusano; Hiroshi Ito; Hirofumi Makino

Recent genetic studies have uncovered a link between familial and idiopathic pulmonary arterial hypertension (PAH) and germline mutations in the bone morphogenetic protein type-II receptor (BMPRII). The pathology of PAH is characterized by remodeling of the pulmonary arteries due to pulmonary artery smooth muscle cell (PASMC) hyperproliferation. Although increased endothelial injury and impaired suppression of PASMC proliferation are both critical for the cellular pathogenesis of PAH, a detailed molecular mechanism underlying PAH has yet to be elucidated. In the present study, we investigated the roles of the BMP system and other vasoactive factors associated with PAH (including endothelin (ET), angiotensin II (Ang II) and aldosterone) in the mitotic actions of PASMCs isolated from idiopathic and secondary PAH lungs. ET1 and aldosterone stimulated PASMC proliferation of idiopathic PAH more effectively than secondary PAH, whereas Ang II and ET3 failed to activate mitosis in either of the PASMC cell type. The effects of ET1 and aldosterone were blocked by bosentan, an ET type-A/B receptor (ETA/BR) antagonist, and eplerenone, a selective mineralocorticoid receptor (MR) blocker, respectively. Among the BMP ligands examined, BMP-2 and BMP-7, but not BMP-4 or BMP-6, significantly increased cell mitosis in both PASMC cell types. Notably, ET1- and aldosterone-induced mitosis and mitogen-activated protein kinase phosphorylation were significantly increased in the presence of BMP-2 and BMP-7 in PASMCs isolated from idiopathic PAH, although additive effects were not observed in PASMCs isolated from secondary PAH. Inhibition of extracellular signal-regulated kinase 1 (ERK1)/ERK2 signaling suppressed basal-, ET1- and aldosterone-induced PASMC mitosis more potently than that of stress-activated protein kinase/c-Jun NH2-terminal kinase inhibition. Given the fact that BMP-2 and BMP-7 upregulated ETA/BR and MR expression and that BMP-2 decreased 11βHSD2 (11β-hydroxysteroid dehydrogenase type 2) levels in PASMCs isolated from idiopathic PAH, BMPR-Smad signaling may have a key role in amplifying the ETA/BR and/or MR-ERK signaling in PASMCs of the PAH lung. Collectively, the functional link between BMP and ET and/or the MR system may be involved in the progress of PASMC mitosis, ultimately leading to the development of clinical PAH.


Molecular and Cellular Endocrinology | 2010

Functional relationship between fibroblast growth factor-8 and bone morphogenetic proteins in regulating steroidogenesis by rat granulosa cells

Tomoko Miyoshi; Fumio Otsuka; Misuzu Yamashita; Kenichi Inagaki; Eri Nakamura; Naoko Tsukamoto; Masaya Takeda; Jiro Suzuki; Hirofumi Makino

Bone morphogenetic proteins (BMPs) have been recognized as crucial molecules in regulating ovarian physiology, with different BMPs having differential actions in FSH-induced estradiol production. To identify the roles of oocyte factors that modulate steroidogenesis controlled by BMPs, we here investigated the effects of FGF-8 in rat granulosa/oocyte co-cultures. FGF-8 potently suppressed FSH-induced estradiol production, but did not affect cAMP-induced estradiol produced by rat granulosa cells. FGF-8 had no effects on progesterone and cAMP production induced by FSH and forskolin. The inhibitory effects of FGF-8 on FSH-induced estradiol production were not altered by BMP-2, -4, -6 or -7. In the presence of FGF-8, BMPs suppressed FSH-induced progesterone by reducing cAMP, suggesting that FGF-8 and BMP independently regulate FSH receptor signaling. Notably, FGF-8-induced ERK and SAPK/JNK phosphorylation in granulosa cells, in which ERK activation was further enhanced by FSH and oocytes. Inhibition of ERK and SAPK/JNK reduced FSH-induced progesterone and cAMP levels, suggesting that the activation of these pathways enhances FSH-induced cAMP signaling. In addition, ERK inhibition upregulated FSH-induced estradiol synthesis, indicating that ERK pathway is also involved in suppressing aromatase activity in granulosa cells. Interestingly, FGF-8 enhanced BMP-induced Smad1/5/8 and Id-1-promoter activities with decreased expression of Smad6/7. Since the SAPK/JNK inhibitor inhibited FGF-8 effects in upregulating Id-1 transcription, SAPK/JNK appears to be involved in the mechanism by which FGF-8 enhances BMP-Smad signaling. Furthermore, in the presence of oocytes, the inhibition of endogenous FGF receptor signaling suppressed FSH- and forskolin-induced progesterone and cAMP, showing that endogenous FGF system is involved in activation of FSH-induced cAMP-PKA signaling via ERK and SAPK/JNK. Thus, the oocyte factor, FGF-8, not only suppresses FSH-induced estradiol production by activating ERK, but also enhances BMP-Smad signaling in granulosa cells. This interaction between FGF-8 and BMPs may play a key role in regulating steroidogenesis through oocyte-granulosa cell communication.


Molecular and Cellular Endocrinology | 2012

Regulatory role of kit ligand-c-kit interaction and oocyte factors in steroidogenesis by rat granulosa cells.

Tomoko Miyoshi; Fumio Otsuka; Eri Nakamura; Kenichi Inagaki; Kanako Ogura-Ochi; Naoko Tsukamoto; Masaya Takeda; Hirofumi Makino

Although kit ligand (KL)-c-kit interaction is known to be critical for oogenesis and folliculogenesis, its role in ovarian steroidogenesis has yet to be elucidated. We studied the impact of KL-c-kit interaction in regulation of steroidogenesis using rat oocyte/granulosa cell co-culture. In the presence of oocytes, soluble KL suppressed FSH-induced estradiol production and aromatase mRNA expression without affecting FSH-induced progesterone production. The KL effect on steroidogenesis was interrupted by an anti-c-kit neutralizing antibody, suggesting that KL-c-kit interaction is involved in suppression of estrogen by granulosa cells through oocyte c-kit action. The cAMP-PKA pathway activity was not directly involved in the estrogen regulation by KL-c-kit action. It was of note that KL treatment increased the expression levels of oocyte-derived FGF-8, GDF-9 and BMP-6, while it reduced the expression levels of oocyte-derived BMP-15 in the oocyte-granulosa cell co-culture. Given the findings that FGF-8, but not GDF-9, BMP-6 or -15, suppressed FSH-induced estrogen production by granulosa cells, oocyte-derived FGF-8 is linked to suppression of FSH-induced estrogen production through the KL-c-kit interaction. Furthermore, the suppression of FSH-induced estrogen production by KL in the co-culture was reversed by a FGF receptor kinase inhibitor and the effect of the inhibitor was enhanced in combination with extracellular-domain protein of BMPRII, which interferes with BMP-15 and GDF-9 activities. Thus, the actions of endogenous oocyte factors including FGF-8 and BMP-15/GDF-9 were involved in the KL activity that inhibited FSH-induced estradiol production. Collectively, the results indicate that KL-c-kit interaction plays a role in estrogenic regulation through oocyte-granulosa cell communication.


Endocrinology | 2012

Mutual Regulation of Growth Hormone and Bone Morphogenetic Protein System in Steroidogenesis by Rat Granulosa Cells

Eri Nakamura; Fumio Otsuka; Kenichi Inagaki; Tomoko Miyoshi; Yoshinori Matsumoto; Kanako Ogura; Naoko Tsukamoto; Masaya Takeda; Hirofumi Makino

GH induces preantral follicle growth and differentiation with oocyte maturation. However, the effects of GH on ovarian steroidogenesis and the mechanisms underlying its effects have yet to be elucidated. In this study, we investigated the actions of GH on steroidogenesis by rat granulosa cells isolated from early antral follicles by focusing on the ovarian bone morphogenetic protein (BMP) system. We found that GH suppressed FSH-induced estradiol production with reduction in aromatase expression and, in contrast, GH increased FSH-induced progesterone level with induction of steroidogenic acute regulatory protein, side chain cleavage cytochrome P450, and 3β-hydroxysteroid dehydrogenase. The effects of GH on steroidogenesis by granulosa cells were enhanced in the presence of the BMP antagonist noggin. Coculture of GH with oocytes did not alter GH regulation of steroidogenesis. Steroid production induced by cAMP donors was not affected by GH treatment and the GH effects on FSH-induced steroid production were not accompanied by changes in cAMP synthesis, suggesting that GH actions were not directly mediated by the cAMP-protein kinase A pathway. GH exerted synergistic effects on MAPK activation elicited by FSH, which regulated FSH-induced steroidogenesis. In addition, GH-induced signal transducer and activator of transcription phosphorylation was involved in the induction of IGF-I expression. GH increased IGF-I, IGF-I receptor, and FSH receptor expression in granulosa cells, and inhibition of IGF-I signaling restored GH stimulation of FSH-induced progesterone production, suggesting that endogenous IGF-I is functionally involved in GH effects on progesterone induction. BMP inhibited IGF-I effects that increased FSH-induced estradiol production with suppression of expression of the GH/IGF-I system, whereas GH/IGF-I actions impaired BMP-Sma and Mad related protein 1/5/8 signaling through down-regulation of the expression of BMP receptors. Thus, GH acts to modulate estrogen and progesterone production differentially through endogenous IGF-I activity in granulosa cells, in which GH-IGF-I interaction leads to antagonization of BMP actions including suppression of FSH-induced progesterone production. Mutual balance between GH/IGF-I and BMP signal intensities may be a key for regulating gonadotropin-induced steroidogenesis in growing follicles.


Journal of Endocrinological Investigation | 2004

Effect of cabergoline treatment on Cushing’s disease caused by aberrant adrenocorticotropin-secreting macroadenoma

Tomoko Miyoshi; Fumio Otsuka; Masaya Takeda; Kenichi Inagaki; Jiro Suzuki; T. Ogura; Isao Date; Kozo Hashimoto; Hirofumi Makino

The present case involves a 47-yr-old woman with Cushing’s disease due to pituitary macroadenoma. The patient had suffered from hypertension and obesity for two yr. Her serum cortisol levels were moderately elevated throughout the observation period, and dexamethasone failed to suppress the cortisol secretion. Plasma ACTH levels were markedly high (>100 pg/ml) and did not respond to CRH provocation. Gel filtration analysis of the patient’s plasma detected the existence of big ACTH molecules, which eluted with a peak of authentic 1–39 ACTH. Cranial magnetic resonance imaging (MRI) revealed a 3 cm pituitary tumor occupying the sellar region and right cavernous sinus with diffuse enhancement by gadolinium. The pituitary mass was removed by transsphenoidal surgery, and was pathologically identified as compatible to ACTH-producing pituitary adenoma by immunohistochemistry. RT-PCR analysis of total cellular RNA extracted from the resected adenoma revealed a relatively high expression level of dopamine D2 receptor (D2R) mRNA. Therefore, a long-acting D2R agonist, cabergoline (0.25 to 0.5 mg/week), was administered for the remnant adenoma, which gradually reduced ACTH levels in 90 days. In addition, cranial MRI exhibited shrinkage of the remnant pituitary mass after a 6-month treatment with cabergoline. This case demonstrates the efficacy of cabergoline to treat Cushing’s disease caused by pituitary macroadenoma secreting aberrant ACTH molecules.

Collaboration


Dive into the Masaya Takeda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge